題目列表(包括答案和解析)
(本小題滿分14分)已知函數(shù),設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n Î N *),x1=4.
(Ⅰ)用表示xn+1;
(Ⅱ)記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若bn=xn-2,試比較與的大。
(14分)已知函數(shù)的圖象過原點(diǎn),且關(guān)于點(diǎn)(-1,1)成中心對稱.(1)求函數(shù)的解析式;(2) 若數(shù)列(nÎN*)滿足:,求數(shù)列的通項(xiàng)公式.
(04年浙江卷理)如圖,△OBC的三個頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對于每一個正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.
(1)求a1,a2,a3及an;
(2)證明,nÎN*;
(3)若記bn=y4n+4-y4n,nÎN*,證明{bn}是等比數(shù)列。
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對于任意nÎN+有bn<成立. 若存在,求出k的值;若不存在,說明理由.
已知數(shù)列 {an}(n Î N)中,a1 = 1,an+1 = ,則an 為:
A.2n-1 B.2n + 1 C. D.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com