又M到AB的距離 查看更多

 

題目列表(包括答案和解析)

已知曲線上動點到定點與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設(shè)圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時,檢驗得不符合要求;

當(dāng)直線l的斜率為k時,;,化簡得

第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

由于點M在橢圓C上,所以

由已知,則

,

由于,故當(dāng)時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

點Q位于直線x=-3右側(cè),且到點F(-1,0)與到直線x=-3的距離之和等于4.
(1)求動點Q的軌跡C;
(2)直線l過點M(1,0)交曲線C于A、B兩點,點P滿足
FP
=
1
2
(
FA
+
FB)
EP
AB
=0
,又
OE
=(x0,0),其中O為坐標(biāo)原點,求x0的取值范圍;
(3)在(2)的條件下,△PEF能否成為以EF為底的等腰三角形?若能,求出此時直線l的方程;若不能,請說明理由.

查看答案和解析>>

點Q位于直線x=-3右側(cè),且到點F(-1,0)與到直線x=-3的距離之和等于4.
(1)求動點Q的軌跡C;
(2)直線l過點M(1,0)交曲線C于A、B兩點,點P滿足
FP
=
1
2
(
FA
+
FB)
,
EP
AB
=0
,又
OE
=(x0,0),其中O為坐標(biāo)原點,求x0的取值范圍;
(3)在(2)的條件下,△PEF能否成為以EF為底的等腰三角形?若能,求出此時直線l的方程;若不能,請說明理由.

查看答案和解析>>

如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
(Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
(Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.
精英家教網(wǎng)

查看答案和解析>>

如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
(Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
(Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.

查看答案和解析>>


同步練習(xí)冊答案