題目列表(包括答案和解析)
(理)(本小題8分)如圖,在四棱錐中,底面是矩形, 平面,,,以的中點為球心、為直徑的球面交于點.
(1) 求證:平面平面;
(2)求點到平面的距離.
證明:(1)由題意,在以為直徑的球面上,則
平面,則
又,平面,
∴,
平面,
∴平面平面. (3分)
(2)∵是的中點,則點到平面的距離等于點到平面的距離的一半,由(1)知,平面于,則線段的長就是點到平面的距離
∵在中,
∴為的中點, (7分)
則點到平面的距離為 (8分)
(其它方法可參照上述評分標準給分)
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,;當時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數(shù)學歸納法.
當時,,成立.
假設(shè)當時,不等式成立,
當時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項公式, …………10分
, …………12分
所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學,科,網(wǎng)Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導數(shù)為
由題意得,
第二問,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
解:因為f(x)=lnx,g(x)=ax+
則其導數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經(jīng)過點(,0),所以=,得.又因為m>1,所以,故直線的方程為
第二問中設(shè),由,消去x,得,
則由,知<8,且有
由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().
由題意可知,2|MO|<|GH|,得到范圍
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com