15.已知雙曲線的右焦點是橢圓的一個頂點.則 查看更多

 

題目列表(包括答案和解析)

已知雙曲線,點、分別為雙曲線的左、右焦點,動點軸上方.

(1)若點的坐標(biāo)為是雙曲線的一條漸近線上的點,求以、為焦點且經(jīng)過點的橢圓的方程;

(2)若∠,求△的外接圓的方程;

(3)若在給定直線上任取一點,從點向(2)中圓引一條切線,切點為. 問是否存在一個定點,恒有?請說明理由.

 

查看答案和解析>>

已知雙曲線,點、分別為雙曲線的左、右焦點,動點軸上方.
(1)若點的坐標(biāo)為是雙曲線的一條漸近線上的點,求以為焦點且經(jīng)過點的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線上任取一點,從點向(2)中圓引一條切線,切點為. 問是否存在一個定點,恒有?請說明理由.

查看答案和解析>>

已知雙曲線,點分別為雙曲線的左、右焦點,動點軸上方.
(1)若點的坐標(biāo)為是雙曲線的一條漸近線上的點,求以、為焦點且經(jīng)過點的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線上任取一點,從點向(2)中圓引一條切線,切點為. 問是否存在一個定點,恒有?請說明理由.

查看答案和解析>>

已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點是橢圓
x2
16
+
y2
9
=1
的一個頂點,則a=______.

查看答案和解析>>

已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點是橢圓的一個頂點,則a=   

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:過C作CE⊥AB于E,連接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直線PC與平面PAB所成的角為,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

,   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

      <ol id="6ghgv"></ol>

        <code id="6ghgv"><dfn id="6ghgv"></dfn></code>

        市一次模文數(shù)參答―1(共2頁)

                                                                                                5分

        (2),時取得極值.由,.                                                                                          8分

        ,,∴當(dāng)時,

        上遞減.                                                                                       12分

        ∴函數(shù)的零點有且僅有1個     15分

         

        22.解:(1) 設(shè),由已知

        ,                                        2分

        設(shè)直線PB與圓M切于點A,

                                                         6分

        (2) 點 B(0,t),點,                                                                  7分

        進(jìn)一步可得兩條切線方程為:

        ,                                   9分

        ,,

        ,,                                          13分

        ,又時,,

        面積的最小值為                                                                            15分

         

         


        同步練習(xí)冊答案
        <cite id="6ghgv"><option id="6ghgv"></option></cite>
          <mark id="6ghgv"><sup id="6ghgv"></sup></mark>