題目列表(包括答案和解析)
以表示值域為R的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間。例如,當,時,,.現(xiàn)有如下命題:
①設(shè)函數(shù)的定義域為,則“”的充要條件是“,,”;
②若學科網(wǎng)函數(shù),則有最大值和最小值;
③若函數(shù),的定義域相同,且,,則;
④若函數(shù)(,)有最大值,則.
其中的真命題有 .(寫出所有真命題的序號)
以表示值域為R的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間.例如,當,時,,.現(xiàn)有如下命題:
①設(shè)函數(shù)的定義域為,則“”的充要條件是“,,”;
②學科網(wǎng)函數(shù)的充要條件是有最大值和最小值;
③若函數(shù),的定義域相同,且,,則;
④若函數(shù)(,)有最大值,則.
其中的真命題有 .(寫出所有真命題的序號)
(本題滿分14分)
已知函數(shù).
(Ⅰ)若為上的單調(diào)函數(shù),試確定實數(shù)的取值范圍;[來源:學_科_網(wǎng)Z_X_X_K]
。á颍┣蠛瘮(shù)在定義域上的極值;
(Ⅲ)設(shè),求證:.
(本小題滿分13分)某市近郊有一塊大約500m×500m的接近正方形的荒地,地方政府準備在此建一個綜合性休閑廣場,首先要建設(shè)如圖所示的一個矩形場地,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域?qū)佋O(shè)塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為S平方米.
(1)分別寫出用x表示y和S的函數(shù)關(guān)系式(寫出函數(shù)定義域);[來源:學§科§網(wǎng)]
(2)怎樣設(shè)計能使S取得最大值,最大值為多少?
一、選擇題(每小題5分,共50分)
二、填空題(每小題4分,共28分)
三、解答題
18.解:(Ⅰ)由已有
(4分)
(6分)
(Ⅱ)由(1)且 (8分)
所以 (10分)
(12分)
(14分)
19.解:(Ⅰ)同學甲同學恰好投4次達標的概率 (4分)
(Ⅱ)可取的值是
(6分)
(8分)
(10分)
的分布列為
3
4
5
(12分)
所以的數(shù)學期望為 (14分)
20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC (4分)
(Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE
建立如圖所示空間直角坐標系,則
A(0,,0,0),P(0,0,),C(,0),D(,0)
,, (6分)
易求為平面PAC的一個法向量.
為平面PDC的一個法向量 (9分)
∴cos
故二面角D-PC-A的正切值為2. (11分)
(Ⅲ)設(shè),則
,
解得點,即 (13分)
由得(不合題意舍去)或
所以當為的中點時,直線與平面所成角的正弦值為 (15分)
21.解:(Ⅰ)設(shè)直線的方程為:
由得,所以的方程為 (4分)
由得點的坐標為.
可求得拋物線的標準方程為. (6分)
(Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得 (8分)
設(shè)則
設(shè),則
(11分)
當時上式是一個與無關(guān)的常數(shù).
所以存在定點,相應(yīng)的常數(shù)是. (14分)
22.解:(Ⅰ)當時 (2分)
在上遞增,在上遞減
所以在0和2處分別達到極大和極小,由已知有
且,因而的取值范圍是. (4分)
(Ⅱ)當時,即
|