22.= c=0.fノ(x)=3 x2+2ax+b.且fノ(1)= 3+2a+b=0. 查看更多

 

題目列表(包括答案和解析)

 [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足。

(Ⅰ)求角C的大。

(Ⅱ)求的最大值。

 (Ⅰ)解:由題意可知

absinC=,2abcosC.

所以tanC=.

因?yàn)?<C<

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

當(dāng)△ABC為正三角形時(shí)取等號(hào),

所以sinA+sinB的最大值是.

 

 


 [番茄花園1]1.

查看答案和解析>>

甲船由島出發(fā)向北偏東的方向作勻速直線航行,速度為海里∕小時(shí),在甲船從島出發(fā)的同時(shí),乙船從島正南海里處的島出發(fā),朝北偏東的方向作勻速直線航行,速度為海里∕小時(shí)。

⑴求出發(fā)小時(shí)時(shí)兩船相距多少海里?

⑴   兩船出發(fā)后多長(zhǎng)時(shí)間相距最近?最近距離為多少海里?

【解析】第一問中根據(jù)時(shí)間得到出發(fā)小時(shí)時(shí)兩船相距的海里為

第二問設(shè)時(shí)間為t,則

利用二次函數(shù)求得最值,

解:⑴依題意有:兩船相距

答:出發(fā)3小時(shí)時(shí)兩船相距海里                           

⑵兩船出發(fā)后t小時(shí)時(shí)相距最近,即

即當(dāng)t=4時(shí)兩船最近,最近距離為海里。

 

查看答案和解析>>

在△ABC中,為三個(gè)內(nèi)角為三條邊,

(I)判斷△ABC的形狀;

(II)若,求的取值范圍.

【解析】本題主要考查正余弦定理及向量運(yùn)算

第一問利用正弦定理可知,邊化為角得到

所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。

第二問中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,則A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

已知函數(shù)為實(shí)數(shù)).

(Ⅰ)當(dāng)時(shí),求的最小值;

(Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

【解析】第一問中由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

第二問.

當(dāng)時(shí),,在上有,遞增,符合題意;  

,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

(Ⅱ) .

當(dāng)時(shí),,在上有,遞增,符合題意;  

,則,∴上恒成立.∵二次函數(shù)的對(duì)稱軸為,且

  .   綜上

 

查看答案和解析>>

已知f(x)是偶函數(shù),且在(-∞,0]上單調(diào)遞減,對(duì)任意x∈R,x≠0,都有f(x)+f(
1
x
)=-1+2log2(x2+
1
x2
)

(Ⅰ)指出f(x)在[0,+∞)上的單調(diào)性(不要求證明),并求f(1)的值;
(Ⅱ)k為常數(shù),-1<k<1,解關(guān)于x的不等式f(
kx+3
x2+9
)>
1
2

查看答案和解析>>


同步練習(xí)冊(cè)答案