故B1坐標(biāo)(). -------------9分 查看更多

 

題目列表(包括答案和解析)

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為-1,直線l y=-X-與坐標(biāo)軸分別交于A,C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1) ,⊙B與X軸相切于點(diǎn)M. 

(1)  求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);       

(2) ⊙B以每秒1個(gè)單位長(zhǎng)度的速度沿X軸負(fù)方向平移,同時(shí),直線l繞點(diǎn)A順時(shí)針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時(shí),直線l也恰好與⊙B第一次相切.問(wèn):直線AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度?

(3)如圖2.過(guò)A,O,C三點(diǎn)作⊙O1,點(diǎn)E是劣弧上一點(diǎn),連接EC,EA.EO,當(dāng)點(diǎn)E在劣弧上運(yùn)動(dòng)時(shí)(不與A,O兩點(diǎn)重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說(shuō)明理由.                                                    

.                       

 

 

【解析】(1)已知點(diǎn)A,C的坐標(biāo),故可推出OA=OC,最后可得∠CAO=45°.

(2)依題意,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,連接B1O,B1N,則MN=3.連接B1A,B1P可推出∠PAB1=∠NAB1.又因?yàn)镺A=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O繼而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直線AC繞點(diǎn)A平均每秒30度.

(3)在CE上截取CK=EA,連接OK,證明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可證明

 

查看答案和解析>>

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為-1,直線l y=-X-與坐標(biāo)軸分別交于A,C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1) ,⊙B與X軸相切于點(diǎn)M. 

(1)  求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);       

(2) ⊙B以每秒1個(gè)單位長(zhǎng)度的速度沿X軸負(fù)方向平移,同時(shí),直線l繞點(diǎn)A順時(shí)針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時(shí),直線l也恰好與⊙B第一次相切.問(wèn):直線AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度?

(3)如圖2.過(guò)A,O,C三點(diǎn)作⊙O1 ,點(diǎn)E是劣弧上一點(diǎn),連接EC,EA.EO,當(dāng)點(diǎn)E在劣弧上運(yùn)動(dòng)時(shí)(不與A,O兩點(diǎn)重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說(shuō)明理由.                                                    

.                       

 

 

【解析】(1)已知點(diǎn)A,C的坐標(biāo),故可推出OA=OC,最后可得∠CAO=45°.

(2)依題意,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,連接B1O,B1N,則MN=3.連接B1A,B1P可推出∠PAB1=∠NAB1.又因?yàn)镺A=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O繼而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直線AC繞點(diǎn)A平均每秒30度.

(3)在CE上截取CK=EA,連接OK,證明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可證明

 

查看答案和解析>>


同步練習(xí)冊(cè)答案