(II)由解得點的坐標為.---- 查看更多

 

題目列表(包括答案和解析)

過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.

(I)試證明兩點的縱坐標之積為定值;

(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.

(1)中證明:設下證之:設直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得 

 (2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之

設點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

⊙O1和⊙O2的極坐標方程分別為

⑴把⊙O1和⊙O2的極坐標方程化為直角坐標方程;

⑵求經過⊙O1,⊙O2交點的直線的直角坐標方程.

【解析】本試題主要是考查了極坐標的返程和直角坐標方程的轉化和簡單的圓冤啊位置關系的運用

(1)中,借助于公式,將極坐標方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.

(I),由.所以

為⊙O1的直角坐標方程.

同理為⊙O2的直角坐標方程.

(II)解法一:由解得

即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標方程為y=-x

 

查看答案和解析>>


同步練習冊答案