當時.不等式恒成立 -----8分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)設,若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,

時,;

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數(shù)b的取值范圍是 

 

查看答案和解析>>

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
已知.
(1)當,時,若不等式恒成立,求的范圍;
(2)試證函數(shù)內存在零點.

查看答案和解析>>

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
已知.
(1)當,時,若不等式恒成立,求的范圍;
(2)試證函數(shù)內存在零點.

查看答案和解析>>

 (本題滿分18分,第(1)題5分,第(2)題5分,第(3)題8分)

    已知函數(shù)。

   (1)若函數(shù)上的增函數(shù),求實數(shù)的取值范圍;

   (2)當時,若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍;

   (3)對于函數(shù)若存在區(qū)間,使時,函數(shù)的值域也是,則稱上的閉函數(shù)。若函數(shù)是某區(qū)間上的閉函數(shù),試探求應滿足的條件。

 

 

 

 

 

 

 

 

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(1)若,,,求方程在區(qū)間內的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

查看答案和解析>>


同步練習冊答案