題目列表(包括答案和解析)
已知函數(shù)f(x)=cos(2x+)+
-
+
sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問(wèn)中,利用f(x)=cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得+kp≤x≤
+kp
第二問(wèn)中,∵xÎ[0, ],∴2x-
Î[-
,
],
∴當(dāng)2x-=-
,即x=0時(shí),f(x)min=-
,
當(dāng)2x-=
,
即x=
時(shí),f(x)max=1
第三問(wèn)中,(a)=sin(2a-)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-<2a-
<
+2kp,∴ cos(2a-
)=
利用構(gòu)造角得到sin2a=sin[(2a-)+
]
解:⑴ f(x)=cos2x-
sin2x-cos2x+
sin2x ………2分
=sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令+2kp≤2x-
≤
+2kp,
解得+kp≤x≤
+kp
……………………5分
∴ f(x)的減區(qū)間是[+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-
Î[-
,
], ……………………7分
∴當(dāng)2x-=-
,即x=0時(shí),f(x)min=-
, ……………………8分
當(dāng)2x-=
,
即x=
時(shí),f(x)max=1
……………………9分
⑶ f(a)=sin(2a-)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-)+
]
=sin(2a-)·cos
+cos(2a-
)·sin
………12分
=×
+
×
=
m |
1 |
|KP|2 |
1 |
|KQ|2 |
OC |
CD |
DO |
KE |
KF |
OP |
OE |
OF |
設(shè)x、y∈R+,S=x+y,P=xy,以下四個(gè)命題中正確命題的序號(hào)是_________________.(把你認(rèn)為正確的命題序號(hào)都填上)
①若P為定值m,則S有最大值;
②若S=P,則P有最大值4;
③若S=P,則S有最小值4;
④若S2≥kP總成立,則k的取值范圍為k≤4.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com