題目列表(包括答案和解析)
某企業(yè)準(zhǔn)備投產(chǎn)一種新產(chǎn)品,經(jīng)測算,已知每年生產(chǎn)萬件的該種產(chǎn)品所需要的總成本為萬元,市場銷售情況可能出現(xiàn)好、中、差三種情況,各種情況發(fā)生的概率和相應(yīng)的價(jià)格p(元)與年產(chǎn)量x之間的函數(shù)關(guān)系如下表所示.
市場情況 | 概率 | 價(jià)格p與產(chǎn)量x的函數(shù)關(guān)系式 |
好 | 0.3 | |
中 | 0.5 | |
差 | 0.2 |
設(shè)L1、L2、L3分別表示市場情況好、中、差時(shí)的利潤,隨機(jī)變量ξx表示當(dāng)年產(chǎn)量為x而市場情況不確定時(shí)的利潤.
(1)分別求利潤L1、L2、L3與年產(chǎn)量x之間的函數(shù)關(guān)系式;
(2)當(dāng)產(chǎn)量x確定時(shí),求隨機(jī)變量ξx的期望Eξx;
(3)求年產(chǎn)量x為何值時(shí),隨機(jī)變量ξx的期望Eξx取得最大值(不需求最大值).
市場情況 | 概率 | 價(jià)格p與產(chǎn)量x的函數(shù)關(guān)系式 |
好 | 0.3 | |
中 | 0.5 | |
差 | 0.2 |
某企業(yè)準(zhǔn)備投產(chǎn)一批特殊型號(hào)的產(chǎn)品,已知該種產(chǎn)品的成本與產(chǎn)量的函數(shù)關(guān)系式為
該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價(jià)格與產(chǎn)量的函數(shù)關(guān)系式如下表所示:
市場情形 | 概率 | 價(jià)格與產(chǎn)量的函數(shù)關(guān)系式 |
好 | 0.4 |
|
中 | 0.4 |
|
差 | 0.2 |
|
設(shè)分別表示市場情形好、中差時(shí)的利潤,隨機(jī)變量,表示當(dāng)產(chǎn)量為,而市場前景無法確定時(shí)的利潤.
(I)分別求利潤與產(chǎn)量的函數(shù)關(guān)系式;
(II)當(dāng)產(chǎn)量確定時(shí),求期望;
(III)試問產(chǎn)量取何值時(shí),取得最大值.
該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價(jià)格與產(chǎn)量的函數(shù)關(guān)系式如下表所示:
市場情形 | 概率 | 價(jià)格與產(chǎn)量的函數(shù)關(guān)系式 |
好 | 0.4 | |
中 | 0.4 | |
差 | 0.2 |
設(shè)分別表示市場情形好、中、差時(shí)的利潤,隨機(jī)變量表示當(dāng)產(chǎn)量為而市場前景無法確定時(shí)的利潤.
(I)分別求利潤與產(chǎn)量的函數(shù)關(guān)系式;
(II)當(dāng)產(chǎn)量確定時(shí),求期望E;
(III)試問產(chǎn)量取何值時(shí),E取得最大值.
市場情形 | 概率 | 價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式 |
好 | 0.4 | p=164-3q |
中 | 0.4 | p=101-3q |
差 | 0.2 | p=70-4q |
一.選擇題(本大題共12小題,每小題5分,共60分.)
D C B B C D C A C C A A
二.填空題(本大題共4小題,每小題4分,共16分.)
(13) (14) (15)―1 (16)
三.解答題
(17)(本小題滿分12分)
解:(Ⅰ):
. 3分
依題意,的周期,且,∴ .∴.
∴ . 5分
∵ [0,], ∴ ≤≤,∴ ≤≤1,
∴ 的最小值為 ,即 ∴ .
∴ . 7分
(Ⅱ)∵ =2, ∴ .
又 ∵ ∠∈(0,), ∴ ∠=. 9分
在△ABC中,∵ ,,
∴ ,.解得 .
又 ∵ 0, ∴ . 12分
(18)(本小題滿分12分)
解:以A點(diǎn)為原點(diǎn),AB為軸,AD為軸,AD
為軸的空間直角坐標(biāo)系,如圖所示.則依題意可知相
關(guān)各點(diǎn)的坐標(biāo)分別是A(0,0,0),B(,0,0),
C(,1,0),D(0,1,0),S(0,0,1),
∴ M(,1,0),N(,,). 2分
∴ (0,,),(,0,0),(,,). 4分
∴ ,.∴ ,.
∴ MN ⊥平面ABN. 6分
(Ⅱ)設(shè)平面NBC的法向量為(,,),則,.且又易知 ,.
∴ 即 ∴
令,則(,0,). 9分
顯然,(0,,)就是平面ABN的法向量.
∴ .
∴ 二面角的余弦值是. 12分
(19)(本小題滿分12分)
解:(Ⅰ)由題意得
(); 3分
同理可得();
(). 5分
(Ⅱ). 8分
(Ⅲ)由上問知 ,即是關(guān)于的三次函數(shù),設(shè)
,則.
令,解得 或 (不合題意,舍去).
顯然當(dāng) 時(shí),;當(dāng) 時(shí),.
∴ 當(dāng)年產(chǎn)量 時(shí),隨機(jī)變量 的期望 取得最大值. 12分
(20)(本小題滿分12分)
解:(Ⅰ)設(shè)(,)是函數(shù) 的圖象上任意一點(diǎn),則容易求得點(diǎn)關(guān)于直線 的對(duì)稱點(diǎn)為(,),依題意點(diǎn)(,)在的圖象上,
∴ . ∴ . 2分
∴ .
∵ 是 的一個(gè)極值點(diǎn),∴ ,解得 .
∴ 函數(shù) 的表達(dá)式是 (). 4分
∴ .
∵ 函數(shù) 的定義域?yàn)椋?sub>), ∴ 只有一個(gè)極值點(diǎn),且顯然當(dāng)
時(shí),;當(dāng)時(shí),.
∴ 函數(shù) 的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是. 6分
(Ⅱ)由 ,
得 ,∴ . 9分
∴ 在 時(shí)恒成立.
∴ 只需求出 在 時(shí)的最大值和 在
時(shí)的最小值,即可求得 的取值范圍.
∵ (當(dāng) 時(shí));
(當(dāng) 時(shí)).
∴ 的取值范圍是 . 12分
(21)(本小題滿分12分)
解:(Ⅰ)∵ ,
∴.
設(shè)O關(guān)于直線 的
對(duì)稱點(diǎn)為的橫坐標(biāo)為 .
又易知直線 解得線段的中點(diǎn)坐標(biāo)
為(1,-3).∴.
∴ 橢圓方程為 . 5分
(Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:.
設(shè)點(diǎn),,則.
由韋達(dá)定理得 ,. 8分
∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)的橫坐標(biāo) .
將,代入,并整理得 . 10分
再將韋達(dá)定理的結(jié)果代入,并整理可得.
∴ 直線ME與軸相交于定點(diǎn)(,0). 12分
(22)(本小題滿分14分)
證明:(Ⅰ)∵ ,,且 (,N?),
∴ . 2分
將 去分母,并整理得 . 5分
∴ ,,……,,
將這個(gè)同向不等式相加,得 ,∴ . 7分
(Ⅱ)∵ ,∴ . 9分
∴ .即 . 11分
∴ ,即
. 14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com