查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè)

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動時(shí),求動點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A A

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)       (14)        (15)―1        (16)

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,

,.解得

又 ∵ 0, ∴ .                                 12分

(18)(本小題滿分12分)

解:以A點(diǎn)為原點(diǎn),AB為軸,AD為軸,AD

軸的空間直角坐標(biāo)系,如圖所示.則依題意可知相

關(guān)各點(diǎn)的坐標(biāo)分別是A(0,0,0),B(,0,0),

C(,1,0),D(0,1,0),S(0,0,1),

   ∴ M(,1,0),N(,,).                                  2分

   ∴ (0,,),,0,0),,,).    4分

   ∴ .∴ ,

   ∴ MN ⊥平面ABN.                                                      6分

   (Ⅱ)設(shè)平面NBC的法向量為,,),則,.且又易知 ,

   ∴   即    ∴

   令,則,0,).                                           9分

   顯然,(0,,)就是平面ABN的法向量.

   ∴ 二面角的余弦值是.                                    12分

(19)(本小題滿分12分)

解:(Ⅰ)由題意得

 

);                             3分

同理可得);

).                           5分

(Ⅱ)       8分

(Ⅲ)由上問知 ,即是關(guān)于的三次函數(shù),設(shè)

,則

,解得  或 (不合題意,舍去).

顯然當(dāng)  時(shí),;當(dāng)  時(shí),

∴ 當(dāng)年產(chǎn)量   時(shí),隨機(jī)變量  的期望  取得最大值.              12分

(20)(本小題滿分12分)

解:(Ⅰ)設(shè),)是函數(shù) 的圖象上任意一點(diǎn),則容易求得點(diǎn)關(guān)于直線  的對稱點(diǎn)為),依題意點(diǎn),)在的圖象上,

. ∴ .            2分

 的一個(gè)極值點(diǎn),∴ ,解得

∴ 函數(shù)  的表達(dá)式是 ).            4分

∵ 函數(shù)  的定義域?yàn)椋?sub>), ∴  只有一個(gè)極值點(diǎn),且顯然當(dāng)

時(shí),;當(dāng)時(shí),

∴ 函數(shù)  的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.           6分

(Ⅱ)由 ,

,∴      9分

 在 時(shí)恒成立.

∴ 只需求出  在   時(shí)的最大值和  在

 時(shí)的最小值,即可求得  的取值范圍.

(當(dāng)  時(shí));

(當(dāng)  時(shí)).

∴   的取值范圍是 .                                         12分

 

(21)(本小題滿分12分)

解:(Ⅰ)∵ ,

設(shè)O關(guān)于直線

對稱點(diǎn)為的橫坐標(biāo)為

又易知直線  解得線段的中點(diǎn)坐標(biāo)

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

設(shè)點(diǎn),則

由韋達(dá)定理得 ,.                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)的橫坐標(biāo)

代入,并整理得 .   10分

再將韋達(dá)定理的結(jié)果代入,并整理可得

∴ 直線ME與軸相交于定點(diǎn)(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ ,且 N?),

∴  .                                                            2分

去分母,并整理得 .                      5分

,,……,,

將這個(gè)同向不等式相加,得 ,∴ .    7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 


同步練習(xí)冊答案