題目列表(包括答案和解析)
(08年雅禮中學一模理)(12分) 設輪船有兩個發(fā)動機,輪船
有四個發(fā)動機,如果半數或半數以上的發(fā)動機沒有故障,輪船就能夠安全航行.現設每個發(fā)動機發(fā)生故障的概率
是
的函數:
(其中
為發(fā)動機啟動后所經歷的時間,
為正常數,每個發(fā)動機工作相互獨立).
(Ⅰ)分別求出輪船安全航行的概率(用
表示);
(Ⅱ)根據時間的變化,比較輪船
和輪船
哪一個更能安全航行(除發(fā)動機發(fā)生故障外,不考慮其他因素).
(08年雅禮中學一模理)(12分) 設輪船有兩個發(fā)動機,輪船
有四個發(fā)動機,如果半數或半數以上的發(fā)動機沒有故障,輪船就能夠安全航行.現設每個發(fā)動機發(fā)生故障的概率
是
的函數:
(其中
為發(fā)動機啟動后所經歷的時間,
為正常數,每個發(fā)動機工作相互獨立).
(Ⅰ)分別求出輪船安全航行的概率(用
表示);
(Ⅱ)根據時間的變化,比較輪船
和輪船
哪一個更能安全航行(除發(fā)動機發(fā)生故障外,不考慮其他因素).
一、選擇題:ADBAA BCCDB
二、填空題
11.; 12.
;
13.
14.()③⑤ (
)②⑤
15. (
)
; (
) 0
三、解答題:
16.解:(1)
…………5分
由成等比數列,知
不是最大邊
…………6分
(2)由余弦定理
得ac=2 …………11分
=
…………12分
17.解:(Ⅰ).
(Ⅱ).
1當時,則
.此時輪船
更安全.
2當時,則
.此時輪船
和輪船
一樣安全.
3當時,則
.此時輪船
更安全.
解:方法一
(Ⅰ)取
的中點
,連結
,由
知
,又
,故
,所以
即為二面角
的平面角.
在△中,
,
,
,
由余弦定理有
,
所以二面角的大小是
.(6分)
(Ⅱ)由(Ⅰ)知道平面
,故平面
平面
,故
在平面
上的射影一定在直線
上,所以點
到平面
的距離即為△
的邊
上的高.
故.
…(12分)
19.解: (Ⅰ)∵△ABC的邊長為
∵△ADE面積等于△ABC面積的一半,
∴
x?AEsin60°=
?
(
解得AE=,?
在△ADE中,由余弦定理:?
y2=x2+?
cos60°,?
∴y2=x2+-
∴y= (a≤x≤
(Ⅱ)證明:∵y= (a≤x≤
且y=,設f(t)=t+
(a2≤t≤
當t∈(a2,
f(t1)-f(t2)=(t1+)-(t2+
)
=(t1-t2)?,?
∵a2<t1<t2<
∴t1t2>0,t1-t2>0,t1t2-
∴f(t1)-f(t2)>0,即f(t1)>f(t2)?
∴f(x)在(a2,
同理可得,f(x)在(
又∵f(a時,y有最小值,且ymin=
a,此時DE∥BC且AD=
a;當t=a2或
a,此時DE為AB或AC邊上的中線.?
20.解:(Ⅰ)∵
,∴
,
又∵,∴
,
∴,
∴橢圓的標準方程為.
………(3分)
當的斜率為0時,顯然
=0,滿足題意,
當的斜率不為0時,設
方程為
,
代入橢圓方程整理得:.
,
,
.
則
,
而
∴,從而
.
綜合可知:對于任意的割線,恒有
.
………(8分)
(Ⅱ),
即:,
當且僅當,即
(此時適合于
的條件)取到等號.
∴三角形△ABF面積的最大值是. ………………………………(13分)
21.解:(Ⅰ)由
故x>0或x≤-1
f(x)定義域為
…………………………(4分)
(Ⅱ)
下面使用數學歸納法證明:
①在n=1時,a1=1,<a1<2,則n=1時(*)式成立.
②假設n=k時成立,
由
要證明:
只需
只需(2k+1)3≤8k(k+1)2
只需1≤4k2+2k
而4k2+2k≥1在k≥1時恒成立.
只需證:4k2+11k+8>0,而4k2+11k+8>0在k≥1時恒成立.
于是:
因此得證.
綜合①②可知(*)式得證.從而原不等式成立. ………………9分
(Ⅲ)要證明:
由(2)可知只需證:
…………(**)
下面用分析法證明:(**)式成立。
要使(**)成立,只需證:
即只需證:(3n-2)3n>(3n-1)3(n-1)
只需證:2n>1
而2n>1在n≥1時顯然成立.故(**)式得證:
于是由(**)式可知有:
因此有:
……………………………………(13分)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com