題目列表(包括答案和解析)
(本小題滿分13分)有一問題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,
如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m
(1)兩人都未解決的概率;
(2)問題得到解決的概率。
(本小題滿分13分) 已知是等比數(shù)列,
;
是等差數(shù)列,
,
.
(1) 求數(shù)列、
的通項(xiàng)公式;
(2) 設(shè)+…+
,
…
,其中
,…試比較
與
的大小,并證明你的結(jié)論.
(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.
(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);
(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?
(本小題滿分13分)
如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 和
是平面ABCD內(nèi)的兩點(diǎn),
和
都與平面ABCD垂直,
(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m
(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面
體ABCDEF的體積。
一、選擇題:
ADBAA BCCDC
二、填空題:
11. ; 12.
; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答題:
16.解:(Ⅰ)
…………5分
由成等比數(shù)列,知
不是最大邊
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
=
…………12分
17.解:(Ⅰ)第一天通過檢查的概率為,
………………………2分
第二天通過檢查的概率為,
…………………………4分
由相互獨(dú)立事件得兩天全部通過檢查的概率為. ………………6分
(Ⅱ)第一天通過而第二天不通過檢查的概率為, …………8分
第二天通過而第一天不通過檢查的概率為,
………………10分
由互斥事件得恰有一天通過檢查的概率為. ……………………12分
18.解:方法一
(Ⅰ)取
的中點(diǎn)
,連結(jié)
,由
知
,又
,故
,所以
即為二面角
的平面角.
在△中,
,
,
,
由余弦定理有
,
所以二面角的大小是
.
(6分)
(Ⅱ)由(Ⅰ)知道平面
,故平面
平面
,故
在平面
上的射影一定在直線
上,所以點(diǎn)
到平面
的距離即為△
的邊
上的高.
故.
…(12分)
19.解:(Ⅰ)設(shè)
則 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴
…………6分
(Ⅱ)當(dāng)an=n時(shí),恒等式為[S(1,n)]2=S(3,n)
證明:
相減得:
∴
相減得:
又
又
∴
………………………………13分
20.解:(Ⅰ)∵,∴
,
又∵,∴
,
∴,
∴橢圓的標(biāo)準(zhǔn)方程為.
………(3分)
當(dāng)的斜率為0時(shí),顯然
=0,滿足題意,
當(dāng)的斜率不為0時(shí),設(shè)
方程為
,
代入橢圓方程整理得:.
,
,
.
則
,
而
∴,從而
.
綜合可知:對(duì)于任意的割線,恒有
.
………(8分)
(Ⅱ),
即:,
當(dāng)且僅當(dāng),即
(此時(shí)適合于
的條件)取到等號(hào).
∴三角形△ABF面積的最大值是. ………………………………(13分)
21.解:(Ⅰ)
……………………………………………4分
(Ⅱ)或者
……………………………………………8分
(Ⅲ)略 ……………………………………13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com