聯(lián)立消去得:∴求點P的軌跡C的方程為 6分 查看更多

 

題目列表(包括答案和解析)

如圖,直線與拋物線交于兩點,與軸相交于點,且.

(1)求證:點的坐標為;

(2)求證:;

(3)求的面積的最小值.

【解析】設出點M的坐標,并把過點M的方程設出來.為避免對斜率不存在的情況進行討論,可以設其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關于的方程.求出的值.

(2)在第(1)問的基礎上,證明:即可.

(3)先建立面積S關于m的函數(shù)關系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.

 

查看答案和解析>>

已知直線某學生做如下變形,由直線與雙曲線聯(lián)立消y得形如的方程,當A=0時該方程有一解;當A≠0時,恒成立,若該生計算過程正確,則實數(shù)m的取值范圍是            .

查看答案和解析>>

設動點P(x,y)(x≥0)到定點F(
1
2
,0)
的距離比它到y(tǒng)軸的距離大
1
2
,記點P的軌跡為曲線C,
(1)求點P的軌跡方程;
(2)設圓M過A(1,0),且圓心M在P的軌跡上,EF是圓M在y軸上截得的弦,當M運動時弦長|EF|是否為定值?請說明理由.

查看答案和解析>>

已知對任意平面向量
AB
=(x,y)
,將
AB
繞其起點沿順時針方向旋轉θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做將點B繞點A沿順時針方向旋轉θ角得到點P.
(1)已知平面內點A(1,2),點B(1+
2
,2-2
2
)
,將點B繞點A沿順時針方向旋轉
π
4
得到點P,求點P的坐標;
(2)設平面內曲線3x2+3y2+2xy=4上的每一點繞坐標原點O沿順時針方向旋轉
π
4
得到的點的軌跡是曲線C,求曲線C的方程;
(3)過(2)中曲線C的焦點的直線l與曲線C交于不同的兩點A、B,當
OA
OB
=0
時,求△AOB的面積.

查看答案和解析>>

(2012•陜西三模)設動點P(x,y)(x≥0)到定點F(
1
2
,0)
的距離比到y(tǒng)軸的距離大
1
2
.記點P的軌跡為曲線C.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M 在y軸的截得的弦,當M 運動時弦長BD是否為定值?說明理由;
(Ⅲ)過F(
1
2
,0)
作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形面GRHS的最小值.

查看答案和解析>>


同步練習冊答案