已知函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),f(X)=log2x的反函數(shù)為f-1(x),等比數(shù)列{an}的公比為2,若f-1(a2)•f-1(a4)=210,則2f(a1)+f(a2)+…+f(a2009=(  )
A、21004×2008B、21005×2009C、21005×2008D、21004×2009

查看答案和解析>>

已知函數(shù),f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π2
)
的最大值為3,f(x)的圖象的相鄰兩對稱軸間的距離為2,在y軸上的截距為2.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

已知函數(shù),f(x)=x,g(x)=
3
8
x2+lnx+2

(Ⅰ) 求函數(shù)F(x)=g(x)-2•f(x)的極大值點與極小值點;
(Ⅱ) 若函數(shù)F(x)=g(x)-2•f(x)在[et,+∞)(t∈Z)上有零點,求t的最大值(e為自然對數(shù)的底數(shù));
(Ⅲ) 設(shè)bn=f(n)
1
f(n+1)
(n∈N*),試問數(shù)列{bn}中是否存在相等的兩項?若存在,求出所有相等的兩項;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù),f(x)=
0(x>0)
-π(x=0)
x
2
3
+1(x<0)
,則復(fù)合函數(shù)f{f[f(-1)]}=( 。
A、x2+1
B、π2+1
C、-π
D、0

查看答案和解析>>

已知函數(shù),f(x)=
log3x   x>0
2-x       x≤0
,若f(f(-3))∈[k,k+1),k∈Z,則k=
 
,當(dāng)f(x)=1時,x=
 

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

D

A

D

B

D

B

B

A

C

二、填空題(每小題5分,共20分)

  13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

三、解答題

17(10分).解:原不等式等價于-----------------------------------2分

當(dāng)--------------------------------------------4分

當(dāng)

 

-------------------------------------------------6分

 

-------------------------------------------------8分

綜上:   --------------------------------10分

18(12分). 解:(Ⅰ)

                         ----------------3分

      -----------------------------4分

  

的單調(diào)區(qū)間為     ----------------6分

(Ⅱ)由----------7分

的內(nèi)角,---------8分

          -------------------10分

     ------------12分

19(12分).解:⑴對任意的正數(shù)均有

----------2分

,                 ----------------------------------------4分

是定義在上的單調(diào)函數(shù),.     ----------6分

(2)當(dāng)時,,,.----------8分

當(dāng)時,

.                 ----------------------------------------10分

,為等差數(shù)列.

,.                      -----------------------------------------12分

20(12分). (1)y==  

     t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

     ∴y===t+ -1

     ∵y=t+ -1在t∈[1,2)上為增函數(shù)  ∴y∈[1,)     即M=[1,)           6分

  (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

     又∁UM=(-∞,1)∪[,+∞)                                             10分

     要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

21(12分).解:對函數(shù)求導(dǎo),得

----------------------------2分

解得

當(dāng)變化時,的變化情況如下表:

x

0

 

0

 

減函數(shù)

增函數(shù)

                                                ----------------------4分

所以,當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù);

           當(dāng)時,的值域為   ----------------------------6分

(Ⅱ)對函數(shù)求導(dǎo),得

                                 

    因此,當(dāng)時,

因此當(dāng),g(x)為減函數(shù),從而當(dāng)時有個g(x)

又g(1)=   ----------------8分

若對于任意,,存在,使得,則

[]

              ----------------------------------------10分

式得

式得

故:的取值范圍為                 -----------------------------------12分

22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分

     數(shù)列{an+λ}是等比數(shù)列  即: an+1+λ=2(an+λ),∴λ=1.

      ∵a1=s1=2a1-1,∴a1=1 

     ∵數(shù)列{ an+1}是首項為2,公比為2的等比數(shù)列          ------------------------4分

∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

   (2)∵an=2n -1

     ∴bn ====-----------------10分

     ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

 

 

 


同步練習(xí)冊答案