③兩平面.過空間一定點O且與兩平面角的直線有且只有1條. 則上述命題中正確的有 (將你認為正確說法前面的序號填上). 查看更多

 

題目列表(包括答案和解析)

已知異面直線a,b所成的角為70,則過空間一定點O,與兩條異面直線a,b都成60角的直線有              

查看答案和解析>>

已知異面直線a,b所成角為θ,過空間一定點P且與a,b所成角均為
π
3
的直線有4條,則θ的取值范圍為(  )

查看答案和解析>>

已知異面直線a,b所成角為θ,過空間一定點P且與a,b所成角均為
π
3
的直線有4條,則θ的取值范圍為(  )
A.(0,
π
3
)
B.(
π
6
,
π
3
)
C.(
π
3
,
π
2
)
D.(
π
3
,
π
2
]

查看答案和解析>>

已知異面直線a,b所成角為θ,過空間一定點P且與a,b所成角均為數(shù)學公式的直線有4條,則θ的取值范圍為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

給出下列四個命題
①過平面外一定點有且只有一個平面與已知平面垂直;
②過空間一定點有且只有一條直線與已知平面垂直;
③過平面外一定直線有且只有一個平面與已知平面垂直;
④垂直于同一平面的兩個平面可能互相平行,也可能相交;
⑤垂直于同一條直線的兩個平面平行;
⑥平行于同一個平面的兩直線不是平行就是相交.
其中正確命題的序號為
②④⑤
②④⑤

查看答案和解析>>

 

說明:

    一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制訂相應的評分細則。

    二、對計算題當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就不再給分。

    三、解答右端所注分數(shù),表示考生正確做到這一步應得累加分。

    四、只給整數(shù)分數(shù),選擇題和填空題不給中間分數(shù)。

一、選擇題:每小題5分,滿分60分。

1―5 DBADD    6―10 AAACA    11―12 BC

二、填空題:每題5分,共20分

13.    14.14    15.1    16.②③

三、解答題(滿分70分)

17.本小題主要考查正弦定理、余弦定理,三角形面積公式等基礎知識。

    解:(1)

                                    (5分)

   (2)

   

    得                                                             (8分)

    (10分)

18.本小題主要考查概率的基本知識與分類思想,獨立重復試驗概率問題,考查運用數(shù)學知

識分析問題解決問題的能力。

解:(1)需賽七局結(jié)束比賽說明前六局3:3打平,即在第三、第四、第五、第六局中乙恰贏一局,設需賽七局結(jié)束比賽為事件A,

                                               (5分)

   (2)設甲獲勝為事件B,則甲獲勝包括甲以4:2獲勝和甲以4:3獲勝兩種情況:

                           (12分)

19.本小題主要考查正四棱柱中線線位置關系、線面垂直判定、三垂線定理、二面角等基礎知識,考查空間想象能力、邏輯思維能力、運算能力以及空間向量的應用。

    ∵AC⊥BD,∴A1C⊥BD,

若A1C⊥平面BED,則A1C⊥BE,

由三垂線定理可得B1C⊥BE,

∴△BCE∽△B1BC,

   (2)連A1G,連EG交A1C于H,則EG⊥BD,

∵A1C⊥平面BED,

∴∠A1GE是二面角A1―BD―E的平面角。

(12分)

   (1)以D為坐標原點,射線DA為x軸的正半軸,

射線DC為y軸的正半軸,建立如圖所示直角坐

標系D―xyz。

      (6分)

   (2)設向量的一個法向量,

                         (12分)

20.本小題主要考查等差數(shù)列、等比數(shù)列定義,求通項、數(shù)列求和等基礎知識,考查綜合分析問題的能力和推理論證能力。

    解:(1)

   

   (2)

   

21.解:(1)對求導得

   

―3

(-3,0)

0

(0,2)

2

(2,9)

9

 

+

0

0

+

 

 

極大

極小

 

    從而(―3,0)和(2,9)是函數(shù)的單調(diào)遞增區(qū)間,(0,2)是的單調(diào)遞減區(qū)間,

   

   (2)設曲線,則切線的方程為

   (3)根據(jù)上述研究,對函數(shù)分析如下:

   

    交點的橫坐標,交點的個數(shù)即為方程的實根的個數(shù)。

   

   

22.解:(1)

 

    把②兩邊平方得

    又代入上式得

<cite id="26k05"></cite>
  • <blockquote id="26k05"></blockquote><li id="26k05"></li>
  • <blockquote id="26k05"></blockquote>

        把③代入①得

       

                                             (6分)

       (2)設直線AB的傾斜角為,根據(jù)對稱性只需研究是銳角情形,不妨設是銳角,

        則

       

        從而    (9分)

        根據(jù)(1)知

       

       

        因此          (12分)

     


    同步練習冊答案