設點.動圓經過點且和直線:相切.記動圓的圓心的軌跡為曲線. 查看更多

 

題目列表(包括答案和解析)

(08年昆明市適應考試)(12分)設點,動圓經過點且和直線相切. 記動圓的圓心的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)設點為直線上的動點,過點作曲線的切線為切點),

證明:直線必過定點并指出定點坐標.

查看答案和解析>>

(09年萊西一中模擬文)(12分)

設點,動圓經過點且和直線相切,記動圓的圓心的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)設點為直線上的動點,過點作曲線的切線為切點),

證明:直線 必過定點并指出定點坐標.

查看答案和解析>>

過點O(0,0)的圓C與直線y=2x-8相切于點P(4,0).
(1)求圓C的方程;
(2)已知點B的坐標為(0,2),設P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值.
(3)在圓C上是否存在兩點M,N關于直線y=kx-1對稱,且以MN為直徑的圓經過原點?若存在,寫出直線MN的方程;若不存在,說明理由.

查看答案和解析>>

設點動圓P經過點F且和直線相切,記動圓的圓心P的軌跡為曲線W。

(1)求曲線W的方程;

(2)過點F作互相垂直的直線,分別交曲線W于A,B和C,D。求四邊形ABCD面積的最小值。

(3)分別在A、B兩點作曲線W的切線,這兩條切線的交點記為Q。

求證:QA⊥QB,且點Q在某一定直線上。

查看答案和解析>>

已知動圓過定點,且與直線l:相切,其中p>0.
(Ⅰ)求動圓圓心C的軌跡方程;
(Ⅱ)設A(x,y)為軌跡C上一定點,經過A作直線AB、AC 分別交拋物線于B、C 兩點,若 AB 和AC 的斜率之積為常數c.求證:直線 BC 經過一定點,并求出該定點的坐標.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.D  2.A   3.D   4.D   5.A   6.C   7.B   8.B   9.C   10.A    11.C    12.B

 

二、填空題(每小題5分,共20分)

13.2   14.   15.   16.③④

 

三、解答題(共70分)

17.(本小題滿分10分)

解:(Ⅰ)由  可得:

     又   

 .                                  --------------------------------5分

(Ⅱ),

    

.                                    ---------------------------------10分

 

18.(本小題滿分12分)

解: 設A隊得分為2分的事件為,

(Ⅰ)∴.             ------------------4分

(Ⅱ)設A隊得分不少于2分的事件為M B隊得分不多于2分的事件為N,

由(Ⅰ)得A隊得分為2分的事件為, A隊得分為3分的事件為

B隊得分為3分的事件為,

         -   ----------------- 9分

  .                    ------------------ 12分

 

19.(本小題滿分12分)

解法一、

(Ⅰ)連結于點O,

平面,平面∩平面

又∵的中點

的中點. ------------------6分

(Ⅱ)作 ,垂足為,連結

     

平面

      ∴在平面上的射影

      ∴

      ∴是二面角的平面角

,

在直角三角形中,

,

二面角的大小為.   ------------------12分

解法二、

(Ⅰ)建立如圖所示空間坐標系

,

平面的法向量為

,

平面 ,

.

所以點是棱的中點.

(Ⅱ)平面的法向量,設平面的法向量為. 則

二面角的大小為.

 

20.(本小題滿分12分)

解:(Ⅰ)由得:,所以等差數列的通項公式為

  .  ------------------------4分

(Ⅱ)由得:

從而

故數列是單調遞增的數列,又因中的最小項,要使恒成立,

則只需 成立即可,由此解得,由于,

故適合條件的的最大值為1.  ------------------------12分

 

21.(本小題滿分12分)

解:(Ⅰ), 是奇函數,其圖象關于原點對稱,

所以函數圖象的對稱中心即為.                         -----------------2分

,其圖象頂點坐標為

所以函數圖象的對稱中心與導函數圖象的頂點橫坐標相同. -----------------4分

(Ⅱ)令.

變化時,變化情況如下表:

0

0

極大值

極小值

                                                            

時,有極大值2,

,曲線在點處的切線的斜率.

直線的方程為                                   -----------------6分

曲線在點處的切線的斜率.

直線的方程為

又曲線在點處的切線的斜率.

直線的方程為.

聯(lián)立直線的方程與直線的方程, ,解得,

.-----------------10分 

聯(lián)立直線的方程與直線的方程, ,解得,

.

,

所以. -----------------12分

圖象如右:

 

 

 

 

 

 

 

22.(本小題滿分12分)

解:(Ⅰ)過點垂直直線于點

依題意得:

所以動點的軌跡為是以為焦點,直線為準線的拋物線, 

即曲線的方程是                      ---------------------4分

(Ⅱ)解法一:設、,則

知,, ∴

又∵切線AQ的方程為:,注意到

切線AQ的方程可化為:,

在切線AQ上, ∴

所以點在直線上;

同理,由切線BQ的方程可得:.

所以點在直線上;

可知,直線AB的方程為:

即直線AB的方程為:

∴直線AB必過定點.     ------------------------12分

 

(Ⅱ)解法二:設,切點的坐標為,則

知,,得切線方程:.

即為:,又∵在切線上,

所以可得:,解之得:.

所以切點,

.

故直線AB的方程為:

化簡得:

即直線AB的方程為:

∴直線AB必過定點.

 


同步練習冊答案