題目列表(包括答案和解析)
a1=a, an=f(an-1)(n=2,3,4,…), a2≠a1,
f(an)-f(an-1)=k(an-an-1)(n=2,3,4,…).
其中a為常數(shù),k為非零常數(shù).
(Ⅰ)令bn=an+1-an(n∈N*),證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)當(dāng)|k|<1時(shí),求an.
己知函數(shù)f(x)=,AR.
(1)證明:函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(A,-1)成中心對(duì)稱圖形;
(2)當(dāng) x[A+1,A+2]時(shí),求證:f(x) [-2,-];
(3)我們利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),….
在上述構(gòu)造數(shù)列的過(guò)程中,如果xi+(I=2,,3,4,…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求實(shí)數(shù)A的取值范圍;
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{ xn},求實(shí)數(shù)A的值.
(1)證明:函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(A,-1)成中心對(duì)稱圖形;
(2)當(dāng) x[A+1,A+2]時(shí),求證:f(x) [-2,-];
(3)我們利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),….
在上述構(gòu)造數(shù)列的過(guò)程中,如果xi+(I=2,,3,4,…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求實(shí)數(shù)A的取值范圍;
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{ xn},求實(shí)數(shù)A的值.
(本題滿分14分)
函數(shù) f (x) 對(duì)任意x Î R都有 f (x) + f (1-x) =
(1)求 f ( )的值.
(2)數(shù)列{an} 滿足:
an= f (0) +,數(shù)列{an} 是等差數(shù)列嗎?請(qǐng)給予證明;
(3)令試比較Tn與Sn的大。
(本題滿分14分)
函數(shù) f (x) 對(duì)任意x Î R都有 f (x) + f (1-x) =
(1)求 f ( )的值.
(2)數(shù)列{an} 滿足:
an= f (0) +,數(shù)列{an} 是等差數(shù)列嗎?請(qǐng)給予證明;
(3)令試比較Tn與Sn的大。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com