∴圓心到切線的距離為=1 ∴k=. 查看更多

 

題目列表(包括答案和解析)

橢圓的離心率為,橢圓的上頂點(diǎn)到左焦點(diǎn)的距離為,左、右焦點(diǎn)分別為F1,F(xiàn)2

(1)求橢圓C的方程;

(2)若直線y=kx+t(t>0)與以F1F2為直徑的圓相切,并與橢圓C交于A,B兩點(diǎn),向量在向量方向上的投影是p,且(·)p2=m(O為坐標(biāo)原點(diǎn)),求m與k的關(guān)系式;

(3)在(2)的情形下,當(dāng)時(shí),求△ABO面積的取值范圍.

查看答案和解析>>

已知橢圓=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于(a-c).

(1)證明:橢圓上的點(diǎn)到F2的最短距離為a-c;

(2)求橢圓的離心率e的取值范圍;

(3)設(shè)橢圓的短半軸長(zhǎng)為1,圓F2與x軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為k(k>0)的直線l與橢圓相交于A、B兩點(diǎn),若OA⊥OB,求直線l被圓F2截得的弦長(zhǎng)S的最大值.

查看答案和解析>>

如圖所示,已知雙曲線S的兩條漸近線過坐標(biāo)原點(diǎn),且與以點(diǎn)A(,0)為圓心、1為半徑的圓相切,雙曲線S的一個(gè)頂點(diǎn)與點(diǎn)A關(guān)于直線y=x對(duì)稱.設(shè)直線l過點(diǎn)A,斜率為k.

(1)

求雙曲線S的方程

(2)

當(dāng)k=1時(shí),在雙曲線S的上支上求點(diǎn)B,使其與直線l的距離為

(3)

當(dāng)0≤k<1時(shí),若雙曲線S的上支上有且只有一個(gè)點(diǎn)B到直線l的距離為,求斜率k的值及相應(yīng)的點(diǎn)B的坐標(biāo).

查看答案和解析>>

已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A1與A點(diǎn)關(guān)于直線y=x對(duì)稱.

(1)求雙曲線C的方程;

(2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為,試求k的值及此時(shí)B點(diǎn)的坐標(biāo).

查看答案和解析>>

已知雙曲線S的兩條漸近線過坐標(biāo)原點(diǎn),且與以點(diǎn)A(,0)為圓心,1為半徑的圓相切,雙曲線S的一個(gè)頂點(diǎn)與點(diǎn)A關(guān)于直線y=x對(duì)稱.設(shè)直線l過點(diǎn)A,斜率為k.

(1)求雙曲線S的方程;

(2)當(dāng)k=1時(shí),在雙曲線S的上支上求點(diǎn)B,使其與直線l的距離為

(3)當(dāng)0≤k<1時(shí),若雙曲線S的上支上有且只有一個(gè)點(diǎn)B到直線l的距離為,求斜率k的值及相應(yīng)的點(diǎn)B的坐標(biāo).如圖.

查看答案和解析>>


同步練習(xí)冊(cè)答案