過點A且與AB垂直的直線方程為. 查看更多

 

題目列表(包括答案和解析)

12、已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點,那么∠MFN必是(  )

查看答案和解析>>

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件
x-y≥0
x+y≥0
所表示區(qū)域內(nèi)一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
1
2
(O為坐標(biāo)原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

已知直線,點P是線性約束條件所表示區(qū)域內(nèi)一動點,,垂足分別為M、N,且(O為坐標(biāo)原點)

   (Ⅰ)求動點P的軌跡方程;

   (Ⅱ)是否存在過點(2,0)的直線與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交 軸于Q點,且使得是等邊三角形。若存在,求出直線的方程,若不存在,說明理由。

 

 

查看答案和解析>>

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件數(shù)學(xué)公式所表示區(qū)域內(nèi)一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且數(shù)學(xué)公式(O為坐標(biāo)原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件
x-y≥0
x+y≥0
所表示區(qū)域內(nèi)一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
1
2
(O為坐標(biāo)原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案