由題意.令15-5r=5.得r=2. 查看更多

 

題目列表(包括答案和解析)

汕頭二中擬建一座長(zhǎng)米,寬米的長(zhǎng)方形體育館.按照建筑要求,每隔米(為正常數(shù))需打建一個(gè)樁位,每個(gè)樁位需花費(fèi)萬(wàn)元(樁位視為一點(diǎn)且打在長(zhǎng)方形的邊上),樁位之間的米墻面需花萬(wàn)元,在不計(jì)地板和天花板的情況下,當(dāng)為何值時(shí),所需總費(fèi)用最少?

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。先求需打個(gè)樁位.再求解墻面所需費(fèi)用為:,最后表示總費(fèi)用,利用導(dǎo)數(shù)判定單調(diào)性,求解最值。

解:由題意可知,需打個(gè)樁位. …………………2分

墻面所需費(fèi)用為:,……4分

∴所需總費(fèi)用)…7分

,則 

當(dāng)時(shí),;當(dāng)時(shí),

∴當(dāng)時(shí),取極小值為.而在內(nèi)極值點(diǎn)唯一,所以.∴當(dāng)時(shí),(萬(wàn)元),即每隔3米打建一個(gè)樁位時(shí),所需總費(fèi)用最小為1170萬(wàn)元.

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線(xiàn)  在點(diǎn)  處的的切線(xiàn)方程;

(Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問(wèn)中,利用當(dāng)時(shí),

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線(xiàn)的切線(xiàn)方程為:

第二問(wèn)中,由題意得,即可。

Ⅰ)當(dāng)時(shí),

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線(xiàn)的切線(xiàn)方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時(shí),上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時(shí),令,對(duì)稱(chēng)軸,

上單調(diào)遞增,又    

① 當(dāng),即時(shí),上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時(shí),, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

一支車(chē)隊(duì)有15輛車(chē),某天依次出發(fā)執(zhí)行運(yùn)輸任務(wù),第一輛車(chē)于下午2時(shí)出發(fā),第二輛車(chē)于下午2時(shí)10分出發(fā),第三輛車(chē)于下午2時(shí)20分出發(fā),依此類(lèi)推。假設(shè)所有的司機(jī)都連續(xù)開(kāi)車(chē),并都在下午6時(shí)停下來(lái)休息。

(1)到下午6時(shí)最后一輛車(chē)行駛了多長(zhǎng)時(shí)間?

(2)如果每輛車(chē)的行駛速度都是60,這個(gè)車(chē)隊(duì)當(dāng)天一共行駛了多少千米?

【解析】第一問(wèn)中,利用第一輛車(chē)出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛

則第15輛車(chē)在小時(shí),最后一輛車(chē)出發(fā)時(shí)間為:小時(shí)

第15輛車(chē)行駛時(shí)間為:小時(shí)(1時(shí)40分)

第二問(wèn)中,設(shè)每輛車(chē)行駛的時(shí)間為:,由題意得到

是以為首項(xiàng),為公差的等差數(shù)列

則行駛的總時(shí)間為:

則行駛的總里程為:運(yùn)用等差數(shù)列求和得到。

解:(1)第一輛車(chē)出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛

則第15輛車(chē)在小時(shí),最后一輛車(chē)出發(fā)時(shí)間為:小時(shí)

第15輛車(chē)行駛時(shí)間為:小時(shí)(1時(shí)40分)         ……5分

(2)設(shè)每輛車(chē)行駛的時(shí)間為:,由題意得到

是以為首項(xiàng),為公差的等差數(shù)列

則行駛的總時(shí)間為:    ……10分

則行駛的總里程為:

 

查看答案和解析>>

已知各項(xiàng)均為正數(shù)的兩個(gè)數(shù)列由表下給出:
定義數(shù)列{cn}:c1=0,cn=
bn,cn-1an
cn-1-an+bncn-1an
(n=2,3,…,5)
,并規(guī)定數(shù)列
n 1 2 3 4 5
an 1 5 3 1 2
bn 1 6 2 x y
{ an},{ bn}的“并和”為 Sab=a1+a2+…+a5+c5.若 Sab=15,
則y的最小值為
3
3

查看答案和解析>>

觀(guān)察下列等式:
3
1×2
×
1
2
=1-
1
22
,
3
1×2
×
1
2
+
4
2×3
×
1
22
=1-
1
22
,
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
=1-
1
23

由以上各式推測(cè)第4個(gè)等式為
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
26
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
26

查看答案和解析>>


同步練習(xí)冊(cè)答案