據(jù)題意有: = tan600 = .解得:. 查看更多

 

題目列表(包括答案和解析)

(1)若橢圓的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦點依次為F1、F2,P是橢圓上異于長軸端點的任意一點.在此條件下我們可以提出這樣一個問題:“設(shè)△PF1F2的過P角的外角平分線為l,自焦點F2引l的垂線,垂足為Q,試求Q點的軌跡方程?”
對該問題某同學(xué)給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
精英家教網(wǎng)
這些模糊地方劃了線,請你將它補充完整.
解:延長F2Q 交F1P的延長線于E,據(jù)題意,
E與F2關(guān)于l對稱,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 
,
在△EF1F2中,顯然OQ是平行于EF1的中位線,
所以|OQ|=
1
2
|EF1|=
 
,
注意到P是橢圓上異于長軸端點的點,所以Q點的軌跡是
 
,
其方程是:
 

(2)如圖2,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點依次為F1、F2,P是雙曲線上異于實軸端點的任意一點.請你試著提出與(1)類似的問題,并加以證明.

查看答案和解析>>

已知兩個單位向量a,b的夾角為60°,c=ta+(1-t)b,若b·c=0,則t=_____.

查看答案和解析>>

已知{an}是遞增數(shù)列,且對任意n∈N*都有ann2λn恒成立,則實數(shù)λ的取值范圍是(   ).

A.            B.(0,+∞)      C.(-2,+∞)        D.(-3,+∞)

 

查看答案和解析>>

已知(n=1,2,…),試證:“數(shù)列{xn}對任意的正整數(shù)n,都滿足xnxn+1,”當(dāng)此題用反證法否定結(jié)論時應(yīng)為(  )

A.對任意的正整數(shù)n,有xnxn+1B.存在正整數(shù)n,使xnxn+1

C.存在正整數(shù)n,使1D.存在正整數(shù)n,使

查看答案和解析>>

C

[解析] 依題意得=()[x+(1-x)]=13+≥13+2=25,當(dāng)且僅當(dāng),即x時取等號,選C.

查看答案和解析>>


同步練習(xí)冊答案