題目列表(包括答案和解析)
. |
OP |
. |
OM |
. |
ON |
. |
OP |
. |
OM |
. |
ON |
1 | 2 | 3 | 4 | 5 | |
前一部分 | 4.8 | 9.6 | 14.4 | 19.2 | 24.0 |
后一部分 | 2.04 | 4.56 | 7.56 | 11.04 | 15.00 |
第三部分 運(yùn)動(dòng)學(xué)
第一講 基本知識(shí)介紹
一. 基本概念
1. 質(zhì)點(diǎn)
2. 參照物
3. 參照系——固連于參照物上的坐標(biāo)系(解題時(shí)要記住所選的是參照系,而不僅是一個(gè)點(diǎn))
4.絕對(duì)運(yùn)動(dòng),相對(duì)運(yùn)動(dòng),牽連運(yùn)動(dòng):v絕=v相+v牽
二.運(yùn)動(dòng)的描述
1.位置:r=r(t)
2.位移:Δr=r(t+Δt)-r(t)
3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對(duì)t 求導(dǎo)數(shù)
5.以上是運(yùn)動(dòng)學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)?墒
三階導(dǎo)數(shù)為什么不是呢?因?yàn)榕nD第二定律是F=ma,即直接和加速度相聯(lián)系。(a對(duì)t的導(dǎo)數(shù)叫“急動(dòng)度”。)
6.由于以上三個(gè)量均為矢量,所以在運(yùn)算中用分量表示一般比較好
三.等加速運(yùn)動(dòng)
v(t)=v0+at r(t)=r0+v0t+1/2 at2
一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當(dāng)飛機(jī)在哪一區(qū)域飛行之外時(shí),不會(huì)有危險(xiǎn)?(注:結(jié)論是這一區(qū)域?yàn)橐粧佄锞,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。)
練習(xí)題:
一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個(gè)方向飛去。求碎片落到地板上的半徑(認(rèn)為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)
四.剛體的平動(dòng)和定軸轉(zhuǎn)動(dòng)
1. 我們講過的圓周運(yùn)動(dòng)是平動(dòng)而不是轉(zhuǎn)動(dòng)
2. 角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt
3. 有限的角位移是標(biāo)量,而極小的角位移是矢量
4. 同一剛體上兩點(diǎn)的相對(duì)速度和相對(duì)加速度
兩點(diǎn)的相對(duì)距離不變,相對(duì)運(yùn)動(dòng)軌跡為圓弧,VA=VB+VAB,在AB連線上
投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB
例:A,B,C三質(zhì)點(diǎn)速度分別VA ,VB ,VC
求G的速度。
五.課后習(xí)題:
一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時(shí)間T木筏劃到路線上標(biāo)有符號(hào)處。河水速度恒定U用作圖法找到在2T,3T,4T時(shí)刻木筏在航線上的確切位置。
五、處理問題的一般方法
(1)用微元法求解相關(guān)速度問題
例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺(tái)上有一定滑輪D,一根輕繩一端固定在C點(diǎn),再繞過B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時(shí),A沿水平面前進(jìn),求當(dāng)跨過B的兩段繩子的夾角為α?xí)r,A的運(yùn)動(dòng)速度。
(vA=)
(2)拋體運(yùn)動(dòng)問題的一般處理方法
(1)將斜上拋運(yùn)動(dòng)分解為水平方向的勻速直線運(yùn)動(dòng)和豎直方向的豎直上拋運(yùn)動(dòng)
(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運(yùn)動(dòng)學(xué)公式解題
(3)將斜拋運(yùn)動(dòng)分解為沿初速度方向的斜向上的勻速直線運(yùn)動(dòng)和自由落體運(yùn)動(dòng)兩個(gè)分運(yùn)動(dòng),用矢量合成法則求解
例2:在擲鉛球時(shí),鉛球出手時(shí)距地面的高度為h,若出手時(shí)的速度為V0,求以何角度擲球時(shí),水平射程最遠(yuǎn)?最遠(yuǎn)射程為多少?
(α=、 x=)
第二講 運(yùn)動(dòng)的合成與分解、相對(duì)運(yùn)動(dòng)
(一)知識(shí)點(diǎn)點(diǎn)撥
參考系的轉(zhuǎn)換:動(dòng)參考系,靜參考系
相對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于動(dòng)參考系的運(yùn)動(dòng)
絕對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于靜參考系統(tǒng)(通常指固定于地面的參考系)的運(yùn)動(dòng)
牽連運(yùn)動(dòng):動(dòng)參考系相對(duì)于靜參考系的運(yùn)動(dòng)
(5)位移合成定理:SA對(duì)地=SA對(duì)B+SB對(duì)地
速度合成定理:V絕對(duì)=V相對(duì)+V牽連
加速度合成定理:a絕對(duì)=a相對(duì)+a牽連
(二)典型例題
(1)火車在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測(cè)得雨滴的徑跡與豎直方向成21。角,而坐在火車?yán)锍丝涂吹接甑蔚膹桔E恰好豎直方向。求解雨滴相對(duì)于地的運(yùn)動(dòng)。
提示:矢量關(guān)系入圖
答案:83.7m/s
(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動(dòng)扶梯,為什么他可以根據(jù)測(cè)得的數(shù)據(jù)來計(jì)算自動(dòng)扶梯的臺(tái)階數(shù)?
提示:V人對(duì)梯=n1/t1
V梯對(duì)地=n/t2
V人對(duì)地=n/t3
V人對(duì)地= V人對(duì)梯+ V梯對(duì)地
答案:n=t2t3n1/(t2-t3)t1
(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達(dá)正對(duì)岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達(dá)正對(duì)岸的B處,求河的寬度。
提示:120=V水*600
D=V船*600
答案:200m
(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時(shí),不至于被沖進(jìn)瀑布中,船對(duì)水的最小速度為多少?
提示:如圖船航行
答案:1.58m/s
(三)同步練習(xí)
1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時(shí),司機(jī)都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對(duì)地面是豎直下落的)
2、模型飛機(jī)以相對(duì)空氣v=39km/h的速度繞一個(gè)邊長2km的等邊三角形飛行,設(shè)風(fēng)速u = 21km/h ,方向與三角形的一邊平行并與飛機(jī)起飛方向相同,試求:飛機(jī)繞三角形一周需多少時(shí)間?
3.圖為從兩列蒸汽機(jī)車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。
4、細(xì)桿AB長L ,兩端分別約束在x 、 y軸上運(yùn)動(dòng),(1)試求桿上與A點(diǎn)相距aL(0< a <1)的P點(diǎn)運(yùn)動(dòng)軌跡;(2)如果vA為已知,試求P點(diǎn)的x 、 y向分速度vPx和vPy對(duì)桿方位角θ的函數(shù)。
(四)同步練習(xí)提示與答案
1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。
2、提示:三角形各邊的方向?yàn)轱w機(jī)合速度的方向(而非機(jī)頭的指向);
第二段和第三段大小相同。
參見右圖,顯然:
v2 = + u2 - 2v合ucos120°
可解出 v合 = 24km/h 。
答案:0.2hour(或12min.)。
3、提示:方法與練習(xí)一類似。答案為:3
4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。
(2)解法有講究:以A端為參照, 則桿上各點(diǎn)只繞A轉(zhuǎn)動(dòng)。但鑒于桿子的實(shí)際運(yùn)動(dòng)情形如右圖,應(yīng)有v牽 = vAcosθ,v轉(zhuǎn) = vA,可知B端相對(duì)A的轉(zhuǎn)動(dòng)線速度為:v轉(zhuǎn) + vAsinθ= 。
P點(diǎn)的線速度必為 = v相
所以 vPx = v相cosθ+ vAx ,vPy = vAy - v相sinθ
答案:(1) + = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA
第二部分 牛頓運(yùn)動(dòng)定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點(diǎn)
a、矢量性
b、獨(dú)立作用性:ΣF → a ,ΣFx → ax …
c、瞬時(shí)性。合力可突變,故加速度可突變(與之對(duì)比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測(cè)量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對(duì)于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點(diǎn)
a、同性質(zhì)(但不同物體)
b、等時(shí)效(同增同減)
c、無條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無關(guān))
第二講 牛頓定律的應(yīng)用
一、牛頓第一、第二定律的應(yīng)用
單獨(dú)應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個(gè)環(huán)節(jié)。
應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng),F(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過程中( )
A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對(duì)地做加速運(yùn)動(dòng)
B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當(dāng)工件相對(duì)皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)
D、工件在皮帶上有可能不存在與皮帶相對(duì)靜止的狀態(tài)
解說:B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。
較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對(duì)滑動(dòng)?因?yàn)槿耸强梢孕巫、重心可以調(diào)節(jié)的特殊“物體”)
此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出
只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對(duì)靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過程略,答案為5.5s)
進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個(gè)問題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應(yīng)用
應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。
在難度方面,“瞬時(shí)性”問題相對(duì)較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應(yīng)用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對(duì)靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對(duì)象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)
進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對(duì)灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對(duì)斜面靜止。試求此時(shí)繩子的張力T 。
解說:當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對(duì)應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。
正交坐標(biāo)的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨(dú)立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”
進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對(duì)扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對(duì)人的靜摩擦力f 。
解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對(duì)比解題過程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?
結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來反推)。
知識(shí)點(diǎn),牛頓第二定律的瞬時(shí)性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應(yīng)用
要點(diǎn):在動(dòng)力學(xué)問題中,如果遇到幾個(gè)研究對(duì)象時(shí),就會(huì)面臨如何處理對(duì)象之間的力和對(duì)象與外界之間的力問題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對(duì)N個(gè)對(duì)象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。
補(bǔ)充:當(dāng)多個(gè)對(duì)象不具有共同的加速度時(shí),一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個(gè)長為L的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?
解說:截取隔離對(duì)象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結(jié)論又如何?
解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。
第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡也麻煩一些。
第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動(dòng),結(jié)論不變。
若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。
應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對(duì)盒子的哪一側(cè)內(nèi)壁有壓力?
解:略。
答:(1)不會(huì);(2)沒有;(3)若斜面光滑,對(duì)兩內(nèi)壁均無壓力,若斜面粗糙,對(duì)斜面上方的內(nèi)壁有壓力。
2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無相對(duì)滑動(dòng),水平推力F應(yīng)為多少?
解說:
此題對(duì)象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。
答案:F = 。
思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無相對(duì)運(yùn)動(dòng)?如果沒有,說明理由;如果有,求出這個(gè)F′的值。
解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當(dāng)m1 ≤ m2時(shí),沒有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′= 。
3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對(duì)棒往上爬,但要求貓對(duì)地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、
1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對(duì)兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。
(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。
位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。
(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?
沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對(duì)滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對(duì)斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學(xué)生活動(dòng))思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對(duì)棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。
解說:這是一個(gè)比較特殊的“連接體問題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。
(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運(yùn)動(dòng)過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設(shè)全程時(shí)間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對(duì)棒的加速度a相是沿棒向上的,故動(dòng)力學(xué)方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對(duì)位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識(shí)出版社,2002年8月第一版。
例題選講針對(duì)“教材”第三章的部分例題和習(xí)題。
第八部分 靜電場(chǎng)
第一講 基本知識(shí)介紹
在奧賽考綱中,靜電學(xué)知識(shí)點(diǎn)數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個(gè)別知識(shí)點(diǎn)上,奧賽的要求顯然更加深化了:如非勻強(qiáng)電場(chǎng)中電勢(shì)的計(jì)算、電容器的連接和靜電能計(jì)算、電介質(zhì)的極化等。在處理物理問題的方法上,對(duì)無限分割和疊加原理提出了更高的要求。
如果把靜電場(chǎng)的問題分為兩部分,那就是電場(chǎng)本身的問題、和對(duì)場(chǎng)中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運(yùn)動(dòng)問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場(chǎng)中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。
一、電場(chǎng)強(qiáng)度
1、實(shí)驗(yàn)定律
a、庫侖定律
內(nèi)容;
條件:⑴點(diǎn)電荷,⑵真空,⑶點(diǎn)電荷靜止或相對(duì)靜止。事實(shí)上,條件⑴和⑵均不能視為對(duì)庫侖定律的限制,因?yàn)榀B加原理可以將點(diǎn)電荷之間的靜電力應(yīng)用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進(jìn)行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認(rèn)為k′= k /εr)。只有條件⑶,它才是靜電學(xué)的基本前提和出發(fā)點(diǎn)(但這一點(diǎn)又是常常被忽視和被不恰當(dāng)?shù)亍熬C合應(yīng)用”的)。
b、電荷守恒定律
c、疊加原理
2、電場(chǎng)強(qiáng)度
a、電場(chǎng)強(qiáng)度的定義
電場(chǎng)的概念;試探電荷(檢驗(yàn)電荷);定義意味著一種適用于任何電場(chǎng)的對(duì)電場(chǎng)的檢測(cè)手段;電場(chǎng)線是抽象而直觀地描述電場(chǎng)有效工具(電場(chǎng)線的基本屬性)。
b、不同電場(chǎng)中場(chǎng)強(qiáng)的計(jì)算
決定電場(chǎng)強(qiáng)弱的因素有兩個(gè):場(chǎng)源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場(chǎng)的場(chǎng)強(qiáng)決定式看出——
⑴點(diǎn)電荷:E = k
結(jié)合點(diǎn)電荷的場(chǎng)強(qiáng)和疊加原理,我們可以求出任何電場(chǎng)的場(chǎng)強(qiáng),如——
⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點(diǎn)P:E = ,其中r和R的意義見圖7-1。
⑶均勻帶電球殼
內(nèi)部:E內(nèi) = 0
外部:E外 = k ,其中r指考察點(diǎn)到球心的距離
如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):
E = ,其中ρ為電荷體密度。這個(gè)式子的物理意義可以參照萬有引力定律當(dāng)中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。
⑷無限長均勻帶電直線(電荷線密度為λ):E =
⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ
二、電勢(shì)
1、電勢(shì):把一電荷從P點(diǎn)移到參考點(diǎn)P0時(shí)電場(chǎng)力所做的功W與該電荷電量q的比值,即
U =
參考點(diǎn)即電勢(shì)為零的點(diǎn),通常取無窮遠(yuǎn)或大地為參考點(diǎn)。
和場(chǎng)強(qiáng)一樣,電勢(shì)是屬于場(chǎng)本身的物理量。W則為電荷的電勢(shì)能。
2、典型電場(chǎng)的電勢(shì)
a、點(diǎn)電荷
以無窮遠(yuǎn)為參考點(diǎn),U = k
b、均勻帶電球殼
以無窮遠(yuǎn)為參考點(diǎn),U外 = k ,U內(nèi) = k
3、電勢(shì)的疊加
由于電勢(shì)的是標(biāo)量,所以電勢(shì)的疊加服從代數(shù)加法。很顯然,有了點(diǎn)電荷電勢(shì)的表達(dá)式和疊加原理,我們可以求出任何電場(chǎng)的電勢(shì)分布。
4、電場(chǎng)力對(duì)電荷做功
WAB = q(UA - UB)= qUAB
三、靜電場(chǎng)中的導(dǎo)體
靜電感應(yīng)→靜電平衡(狹義和廣義)→靜電屏蔽
1、靜電平衡的特征可以總結(jié)為以下三層含義——
a、導(dǎo)體內(nèi)部的合場(chǎng)強(qiáng)為零;表面的合場(chǎng)強(qiáng)不為零且一般各處不等,表面的合場(chǎng)強(qiáng)方向總是垂直導(dǎo)體表面。
b、導(dǎo)體是等勢(shì)體,表面是等勢(shì)面。
c、導(dǎo)體內(nèi)部沒有凈電荷;孤立導(dǎo)體的凈電荷在表面的分布情況取決于導(dǎo)體表面的曲率。
2、靜電屏蔽
導(dǎo)體殼(網(wǎng)罩)不接地時(shí),可以實(shí)現(xiàn)外部對(duì)內(nèi)部的屏蔽,但不能實(shí)現(xiàn)內(nèi)部對(duì)外部的屏蔽;導(dǎo)體殼(網(wǎng)罩)接地后,既可實(shí)現(xiàn)外部對(duì)內(nèi)部的屏蔽,也可實(shí)現(xiàn)內(nèi)部對(duì)外部的屏蔽。
四、電容
1、電容器
孤立導(dǎo)體電容器→一般電容器
2、電容
a、定義式 C =
b、決定式。決定電容器電容的因素是:導(dǎo)體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容
⑴平行板電容器 C = = ,其中ε為絕對(duì)介電常數(shù)(真空中ε0 = ,其它介質(zhì)中ε= ),εr則為相對(duì)介電常數(shù),εr = 。
⑵柱形電容器:C =
⑶球形電容器:C =
3、電容器的連接
a、串聯(lián) = +++ … +
b、并聯(lián) C = C1 + C2 + C3 + … + Cn
4、電容器的能量
用圖7-3表征電容器的充電過程,“搬運(yùn)”電荷做功W就是圖中陰影的面積,這也就是電容器的儲(chǔ)能E ,所以
E = q0U0 = C =
電場(chǎng)的能量。電容器儲(chǔ)存的能量究竟是屬于電荷還是屬于電場(chǎng)?正確答案是后者,因此,我們可以將電容器的能量用場(chǎng)強(qiáng)E表示。
對(duì)平行板電容器 E總 = E2
認(rèn)為電場(chǎng)能均勻分布在電場(chǎng)中,則單位體積的電場(chǎng)儲(chǔ)能 w = E2 。而且,這以結(jié)論適用于非勻強(qiáng)電場(chǎng)。
五、電介質(zhì)的極化
1、電介質(zhì)的極化
a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場(chǎng)時(shí)每個(gè)分子的正、負(fù)電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)
b、電介質(zhì)的極化:當(dāng)介質(zhì)中存在外電場(chǎng)時(shí),無極分子會(huì)變?yōu)橛袠O分子,有極分子會(huì)由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。
2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷
a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負(fù)電和正電,但這些電荷并不能自由移動(dòng),因此稱為束縛電荷,除了電介質(zhì),導(dǎo)體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動(dòng)的電荷稱為自由電荷。事實(shí)上,導(dǎo)體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。
b、極化電荷是更嚴(yán)格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對(duì)極化電荷來說的,它是指可以自由移動(dòng)的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測(cè)量,但后者卻不能。
第二講 重要模型與專題
一、場(chǎng)強(qiáng)和電場(chǎng)力
【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點(diǎn)的場(chǎng)強(qiáng)均為零。
【模型分析】這是一個(gè)疊加原理應(yīng)用的基本事例。
如圖7-5所示,在球殼內(nèi)取一點(diǎn)P ,以P為頂點(diǎn)做兩個(gè)對(duì)頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個(gè)面元ΔS1和ΔS2 ,設(shè)球面的電荷面密度為σ,則這兩個(gè)面元在P點(diǎn)激發(fā)的場(chǎng)強(qiáng)分別為
ΔE1 = k
ΔE2 = k
為了弄清ΔE1和ΔE2的大小關(guān)系,引進(jìn)錐體頂部的立體角ΔΩ ,顯然
= ΔΩ =
所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點(diǎn)激發(fā)的合場(chǎng)強(qiáng)為零。
同理,其它各個(gè)相對(duì)的面元ΔS3和ΔS4 、ΔS5和ΔS6 … 激發(fā)的合場(chǎng)強(qiáng)均為零。原命題得證。
【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場(chǎng)強(qiáng)度。
【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點(diǎn)激發(fā)的場(chǎng)強(qiáng)大小為
ΔE = k ,方向由P指向O點(diǎn)。
無窮多個(gè)這樣的面元激發(fā)的場(chǎng)強(qiáng)大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預(yù)見——由于由于在x方向、y方向上的對(duì)稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求
ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設(shè)為ΔS′
所以 ΣEz = ΣΔS′
而 ΣΔS′= πR2
【答案】E = kπσ ,方向垂直邊界線所在的平面。
〖學(xué)員思考〗如果這個(gè)半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場(chǎng)強(qiáng)又是多少?
〖推薦解法〗將半球面看成4個(gè)球面,每個(gè)球面在x、y、z三個(gè)方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個(gè)方向上的分量,因此ΣE = ΣEx …
〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負(fù)電的一方)。
【物理情形2】有一個(gè)均勻的帶電球體,球心在O點(diǎn),半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個(gè)球形空腔,空腔球心在O′點(diǎn),半徑為R′,= a ,如圖7-7所示,試求空腔中各點(diǎn)的場(chǎng)強(qiáng)。
【模型分析】這里涉及兩個(gè)知識(shí)的應(yīng)用:一是均勻帶電球體的場(chǎng)強(qiáng)定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補(bǔ)法。
將球體和空腔看成完整的帶正電的大球和帶負(fù)電(電荷體密度相等)的小球的集合,對(duì)于空腔中任意一點(diǎn)P ,設(shè) = r1 , = r2 ,則大球激發(fā)的場(chǎng)強(qiáng)為
E1 = k = kρπr1 ,方向由O指向P
“小球”激發(fā)的場(chǎng)強(qiáng)為
E2 = k = kρπr2 ,方向由P指向O′
E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。
【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場(chǎng)是勻強(qiáng)電場(chǎng)。
〖學(xué)員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個(gè)電量為q的點(diǎn)電荷,它受到的電場(chǎng)力將為多大?
〖解說〗上面解法的按部就班應(yīng)用…
〖答〗πkρq〔?〕。
二、電勢(shì)、電量與電場(chǎng)力的功
【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點(diǎn),過圓心跟環(huán)面垂直的軸線上有P點(diǎn), = r ,以無窮遠(yuǎn)為參考點(diǎn),試求P點(diǎn)的電勢(shì)UP 。
【模型分析】這是一個(gè)電勢(shì)標(biāo)量疊加的簡單模型。先在圓環(huán)上取一個(gè)元段ΔL ,它在P點(diǎn)形成的電勢(shì)
ΔU = k
環(huán)共有段,各段在P點(diǎn)形成的電勢(shì)相同,而且它們是標(biāo)量疊加。
【答案】UP =
〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個(gè)總電量的分布不是均勻的,結(jié)論會(huì)改變嗎?
〖答〗UP = ;結(jié)論不會(huì)改變。
〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當(dāng)電量均勻分布時(shí),球心電勢(shì)為多少?球內(nèi)(包括表面)各點(diǎn)電勢(shì)為多少?(2)當(dāng)電量不均勻分布時(shí),球心電勢(shì)為多少?球內(nèi)(包括表面)各點(diǎn)電勢(shì)為多少?
〖解說〗(1)球心電勢(shì)的求解從略;
球內(nèi)任一點(diǎn)的求解參看圖7-5
ΔU1 = k= k·= kσΔΩ
ΔU2 = kσΔΩ
它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ
而 r1 + r2 = 2Rcosα
所以 ΔU = 2RkσΔΩ
所有面元形成電勢(shì)的疊加 ΣU = 2RkσΣΔΩ
注意:一個(gè)完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對(duì)頂?shù)腻F角,ΣΔΩ只能是2π ,所以——
ΣU = 4πRkσ= k
(2)球心電勢(shì)的求解和〖思考〗相同;
球內(nèi)任一點(diǎn)的電勢(shì)求解可以從(1)問的求解過程得到結(jié)論的反證。
〖答〗(1)球心、球內(nèi)任一點(diǎn)的電勢(shì)均為k ;(2)球心電勢(shì)仍為k ,但其它各點(diǎn)的電勢(shì)將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢(shì)體,球面不再是等勢(shì)面)。
【相關(guān)應(yīng)用】如圖7-9所示,球形導(dǎo)體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個(gè)電量為+Q的點(diǎn)電荷,試求球心處的電勢(shì)。
【解析】由于靜電感應(yīng),球殼的內(nèi)、外壁形成兩個(gè)帶電球殼。球心電勢(shì)是兩個(gè)球殼形成電勢(shì)、點(diǎn)電荷形成電勢(shì)的合效果。
根據(jù)靜電感應(yīng)的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢(shì)仍可以應(yīng)用定式,所以…
【答案】Uo = k - k + k 。
〖反饋練習(xí)〗如圖7-10所示,兩個(gè)極薄的同心導(dǎo)體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個(gè)電量為+q的點(diǎn)電荷。試求:(1)A球殼的感應(yīng)電荷量;(2)外球殼的電勢(shì)。
〖解說〗這是一個(gè)更為復(fù)雜的靜電感應(yīng)情形,B殼將形成圖示的感應(yīng)電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應(yīng)電荷分布都是不均勻的。
此外,我們還要用到一個(gè)重要的常識(shí):接地導(dǎo)體(A殼)的電勢(shì)為零。但值得注意的是,這里的“為零”是一個(gè)合效果,它是點(diǎn)電荷q 、A殼、B殼(帶同樣電荷時(shí))單獨(dú)存在時(shí)在A中形成的的電勢(shì)的代數(shù)和,所以,當(dāng)我們以球心O點(diǎn)為對(duì)象,有
UO = k + k + k = 0
QB應(yīng)指B球殼上的凈電荷量,故 QB = 0
所以 QA = -q
☆學(xué)員討論:A殼的各處電勢(shì)均為零,我們的方程能不能針對(duì)A殼表面上的某點(diǎn)去列?(答:不能,非均勻帶電球殼的球心以外的點(diǎn)不能應(yīng)用定式。
基于剛才的討論,求B的電勢(shì)時(shí)也只能求B的球心的電勢(shì)(獨(dú)立的B殼是等勢(shì)體,球心電勢(shì)即為所求)——
UB = k + k
〖答〗(1)QA = -q ;(2)UB = k(1-) 。
【物理情形2】圖7-11中,三根實(shí)線表示三根首尾相連的等長絕緣細(xì)棒,每根棒上的電荷分布情況與絕緣棒都換成導(dǎo)體棒時(shí)完全相同。點(diǎn)A是Δabc的中心,點(diǎn)B則與A相對(duì)bc棒對(duì)稱,且已測(cè)得它們的電勢(shì)分別為UA和UB 。試問:若將ab棒取走,A、B兩點(diǎn)的電勢(shì)將變?yōu)槎嗌伲?/p>
【模型分析】由于細(xì)棒上的電荷分布既不均勻、三根細(xì)棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應(yīng)用。若用元段分割→疊加,也具有相當(dāng)?shù)睦щy。所以這里介紹另一種求電勢(shì)的方法。
每根細(xì)棒的電荷分布雖然復(fù)雜,但相對(duì)各自的中點(diǎn)必然是對(duì)稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對(duì)A點(diǎn)的電勢(shì)貢獻(xiàn)都相同(可設(shè)為U1);②ab棒、ac棒對(duì)B點(diǎn)的電勢(shì)貢獻(xiàn)相同(可設(shè)為U2);③bc棒對(duì)A、B兩點(diǎn)的貢獻(xiàn)相同(為U1)。
所以,取走ab前 3U1 = UA
2U2 + U1 = UB
取走ab后,因三棒是絕緣體,電荷分布不變,故電勢(shì)貢獻(xiàn)不變,所以
UA′= 2U1
UB′= U1 + U2
【答案】UA′= UA ;UB′= UA + UB 。
〖模型變換〗正四面體盒子由彼此絕緣的四塊導(dǎo)體板構(gòu)成,各導(dǎo)體板帶電且電勢(shì)分別為U1 、U2 、U3和U4 ,則盒子中心點(diǎn)O的電勢(shì)U等于多少?
〖解說〗此處的四塊板子雖然位置相對(duì)O點(diǎn)具有對(duì)稱性,但電量各不相同,因此對(duì)O點(diǎn)的電勢(shì)貢獻(xiàn)也不相同,所以應(yīng)該想一點(diǎn)辦法——
我們用“填補(bǔ)法”將電量不對(duì)稱的情形加以改觀:先將每一塊導(dǎo)體板復(fù)制三塊,作成一個(gè)正四面體盒子,然后將這四個(gè)盒子位置重合地放置——構(gòu)成一個(gè)有四層壁的新盒子。在這個(gè)新盒子中,每個(gè)壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢(shì)也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個(gè)等勢(shì)面、整個(gè)盒子也是一個(gè)等勢(shì)體,故新盒子的中心電勢(shì)為
U′= U1 + U2 + U3 + U4
最后回到原來的單層盒子,中心電勢(shì)必為 U = U′
〖答〗U = (U1 + U2 + U3 + U4)。
☆學(xué)員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因?yàn)槿切胃鬟吷想妱?shì)雖然相等,但中點(diǎn)的電勢(shì)和邊上的并不相等。)
〖反饋練習(xí)〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點(diǎn)C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對(duì)O點(diǎn)對(duì)稱的兩點(diǎn),已知P點(diǎn)的電勢(shì)為UP ,試求Q點(diǎn)的電勢(shì)UQ 。
〖解說〗這又是一個(gè)填補(bǔ)法的應(yīng)用。將半球面補(bǔ)成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。
從電量的角度看,右半球面可以看作不存在,故這時(shí)P、Q的電勢(shì)不會(huì)有任何改變。
而換一個(gè)角度看,P、Q的電勢(shì)可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。
考查P點(diǎn),UP = k + U半球面
其中 U半球面顯然和為填補(bǔ)時(shí)Q點(diǎn)的電勢(shì)大小相等、符號(hào)相反,即 U半球面= -UQ
以上的兩個(gè)關(guān)系已經(jīng)足以解題了。
〖答〗UQ = k - UP 。
【物理情形3】如圖7-13所示,A、B兩點(diǎn)相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點(diǎn)電荷。試問:(1)將單位正電荷從O點(diǎn)沿移到D點(diǎn),電場(chǎng)力對(duì)它做了多少功?(2)將單位負(fù)電荷從D點(diǎn)沿AB的延長線移到無窮遠(yuǎn)處去,電場(chǎng)力對(duì)它做多少功?
【模型分析】電勢(shì)疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應(yīng)用。
UO = k + k = 0
UD = k + k = -
U∞ = 0
再用功與電勢(shì)的關(guān)系即可。
【答案】(1);(2)。
【相關(guān)應(yīng)用】在不計(jì)重力空間,有A、B兩個(gè)帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點(diǎn)。試問:(1)若解除A球的固定,它能獲得的最大動(dòng)能是多少?(2)若同時(shí)解除兩球的固定,它們各自的獲得的最大動(dòng)能是多少?(3)未解除固定時(shí),這個(gè)系統(tǒng)的靜電勢(shì)能是多少?
【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計(jì)算,另啟用動(dòng)量守恒關(guān)系;第(3)問是在前兩問基礎(chǔ)上得出的必然結(jié)論…(這里就回到了一個(gè)基本的觀念斧正:勢(shì)能是屬于場(chǎng)和場(chǎng)中物體的系統(tǒng),而非單純屬于場(chǎng)中物體——這在過去一直是被忽視的。在兩個(gè)點(diǎn)電荷的環(huán)境中,我們通常說“兩個(gè)點(diǎn)電荷的勢(shì)能”是多少。)
【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。
〖思考〗設(shè)三個(gè)點(diǎn)電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個(gè)點(diǎn)電荷系統(tǒng)的靜電勢(shì)能是多少?
〖解〗略。
〖答〗k(++)。
〖反饋應(yīng)用〗如圖7-14所示,三個(gè)帶同種電荷的相同金屬小球,每個(gè)球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個(gè)球?qū)㈤_始運(yùn)動(dòng)起來,試求中間這個(gè)小球的最大速度。
〖解〗設(shè)剪斷的是1、3之間的繩子,動(dòng)力學(xué)分析易知,2球獲得最大動(dòng)能時(shí),1、2之間的繩子與2、3之間的繩子剛好應(yīng)該在一條直線上。而且由動(dòng)量守恒知,三球不可能有沿繩子方向的速度。設(shè)2球的速度為v ,1球和3球的速度為v′,則
動(dòng)量關(guān)系 mv + 2m v′= 0
能量關(guān)系 3k = 2 k + k + mv2 + 2m
解以上兩式即可的v值。
〖答〗v = q 。
三、電場(chǎng)中的導(dǎo)體和電介質(zhì)
【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠(yuǎn)小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場(chǎng)強(qiáng);(3)兩板間的電勢(shì)差。
【模型分析】由于靜電感應(yīng),A、B兩板的四個(gè)平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場(chǎng)強(qiáng)為零的結(jié)論還是存在的);這里應(yīng)注意金屬板“很大”的前提條件,它事實(shí)上是指物理無窮大,因此,可以應(yīng)用無限大平板的場(chǎng)強(qiáng)定式。
為方便解題,做圖7-15,忽略邊緣效應(yīng),四個(gè)面的電荷分布應(yīng)是均勻的,設(shè)四個(gè)面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然
(σ1 + σ2)S = Q1
(σ3 + σ4)S = Q2
A板內(nèi)部空間場(chǎng)強(qiáng)為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0
A板內(nèi)部空間場(chǎng)強(qiáng)為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0
解以上四式易得 σ1 = σ4 =
σ2 = ?σ3 =
有了四個(gè)面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場(chǎng)強(qiáng)就好求了〔如EⅡ =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。
最后,UAB = EⅡd
【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場(chǎng)強(qiáng)2πk,方向垂直A板向外,A、B板之間空間場(chǎng)強(qiáng)2πk,方向由A垂直指向B,B板外側(cè)空間場(chǎng)強(qiáng)2πk,方向垂直B板向外;(3)A、B兩板的電勢(shì)差為2πkd,A板電勢(shì)高。
〖學(xué)員思考〗如果兩板帶等量異號(hào)的凈電荷,兩板的外側(cè)空間場(chǎng)強(qiáng)等于多少?(答:為零。)
〖學(xué)員討論〗(原模型中)作為一個(gè)電容器,它的“電量”是多少(答:)?如果在板間充滿相對(duì)介電常數(shù)為εr的電介質(zhì),是否會(huì)影響四個(gè)面的電荷分布(答:不會(huì))?是否會(huì)影響三個(gè)空間的場(chǎng)強(qiáng)(答:只會(huì)影響Ⅱ空間的場(chǎng)強(qiáng))?
〖學(xué)員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對(duì)象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力。〕
【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對(duì)介電常數(shù)為εr的均勻電介質(zhì),當(dāng)兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場(chǎng)強(qiáng);(3)介質(zhì)表面的極化電荷。
【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場(chǎng)強(qiáng),故對(duì)電荷的分布情況肯定有影響。設(shè)真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有
Q1 + Q2 = Q
兩板分別為等勢(shì)體,將電容器看成上下兩個(gè)電容器的并聯(lián),必有
U1 = U2 即 = ,即 =
解以上兩式即可得Q1和Q2 。
場(chǎng)強(qiáng)可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場(chǎng)強(qiáng)相等)。
上下部分的電量是不等的,但場(chǎng)強(qiáng)居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當(dāng)k 、σ同時(shí)改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當(dāng)于在真空中形成了一個(gè)新的電場(chǎng),正是這個(gè)電場(chǎng)與自由電荷(在真空中)形成的電場(chǎng)疊加成為E2 ,所以
E2 = 4πk(σ ? σ′)= 4πk( ? )
請(qǐng)注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個(gè)帶電面疊加的合效果。
【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個(gè)空間的場(chǎng)強(qiáng)均為 ;(3)Q 。
〖思考應(yīng)用〗一個(gè)帶電量為Q的金屬小球,周圍充滿相對(duì)介電常數(shù)為εr的均勻電介質(zhì),試求與與導(dǎo)體表面接觸的介質(zhì)表面的極化電荷量。
〖解〗略。
〖答〗Q′= Q 。
四、電容器的相關(guān)計(jì)算
【物理情形1】由許多個(gè)電容為C的電容器組成一個(gè)如圖7-17所示的多級(jí)網(wǎng)絡(luò),試問:(1)在最后一級(jí)的右邊并聯(lián)一個(gè)多大電容C′,可使整個(gè)網(wǎng)絡(luò)的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡(luò)的級(jí)數(shù),整個(gè)網(wǎng)絡(luò)A、B兩端的總電容是多少?
【模型分析】這是一個(gè)練習(xí)電容電路簡化基本事例。
第(1)問中,未給出具體級(jí)數(shù),一般結(jié)論應(yīng)適用特殊情形:令級(jí)數(shù)為1 ,于是
+ = 解C′即可。
第(2)問中,因?yàn)椤盁o限”,所以“無限加一級(jí)后仍為無限”,不難得出方程
+ =
【答案】(1)C ;(2)C 。
【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。
【解說】對(duì)于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個(gè)端點(diǎn)之間的電容等效,容易得出定式——
Δ→Y型:Ca =
Cb =
Cc =
Y→Δ型:C1 =
C2 =
C3 =
有了這樣的定式后,我們便可以進(jìn)行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進(jìn)新的符號(hào)表達(dá),而是直接將變換后的量值標(biāo)示在圖中)——
【答】約2.23μF 。
【物理情形2】如圖7-21所示的電路中,三個(gè)電容器完全相同,電源電動(dòng)勢(shì)ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個(gè)電容器的電壓Uao 、Ubo和Uco各為多少。
【解說】這是一個(gè)考查電容器電路的基本習(xí)題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。
電量關(guān)系:++= 0
電勢(shì)關(guān)系:ε1 = Uao + Uob = Uao ? Ubo
ε2 = Ubo + Uoc = Ubo ? Uco
解以上三式即可。
【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。
【伸展應(yīng)用】如圖7-22所示,由n個(gè)單元組成的電容器網(wǎng)絡(luò),每一個(gè)單元由三個(gè)電容器連接而成,其中有兩個(gè)的電容為3C ,另一個(gè)的電容為3C 。以a、b為網(wǎng)絡(luò)的輸入端,a′、b′為輸出端,今在a、b間加一個(gè)恒定電壓U ,而在a′b′間接一個(gè)電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲(chǔ)存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個(gè)單元的三個(gè)電容器儲(chǔ)存的總電能是多少?
【解說】這是一個(gè)結(jié)合網(wǎng)絡(luò)計(jì)算和“孤島現(xiàn)象”的典型事例。
(1)類似“物理情形1”的計(jì)算,可得 C總 = Ck = C
所以,從輸入端算起,第k單元后的電壓的經(jīng)驗(yàn)公式為 Uk =
再算能量儲(chǔ)存就不難了。
(2)斷開前,可以算出第一單元的三個(gè)電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時(shí),C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——
電量關(guān)系:Q1′= Q3′
Q2′+ Q3′=
電勢(shì)關(guān)系:+ =
從以上三式解得 Q1′= Q3′= ,Q2′= ,這樣系統(tǒng)的儲(chǔ)能就可以用得出了。
【答】(1)Ek = ;(2) 。
〖學(xué)員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲(chǔ)能是否一樣?(答:不一樣;在相互充電的過程中,導(dǎo)線消耗的焦耳熱已不可忽略。)
☆第七部分完☆
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com