題目列表(包括答案和解析)
設(shè)為兩條直線,為兩個(gè)平面,下列四個(gè)命題中,正確的命題是
A.若與所成的角相等,則
B.若,,則
C.若,則
D.若,,則
如圖,在平面直角坐標(biāo)系中,是一個(gè)與x軸的正半軸、y軸的正半軸分別相切于點(diǎn)C、D的定圓所圍成的區(qū)域(含邊界),A、B、C、D是該圓的四等分點(diǎn).若點(diǎn)、點(diǎn)滿足且,則稱P優(yōu)于.如果中的點(diǎn)滿足:不存在中的其它點(diǎn)優(yōu)于Q,那么所有這樣的點(diǎn)Q組成的集合是劣弧
A. B. C. D.
設(shè)為兩條直線,為兩個(gè)平面,下列四個(gè)命題中,正確的命題是( 。
A.若與所成的角相等,則
B.若,,則
C.若,則
D.若,,則
對(duì)于平面和共面的直線,,下列命題中真命題是
A.若,,則 B.若,,則
C.若,,則 D.若,與所成的角相等,則
①垂直于同一直線的兩條直線互相平行
②垂直于同一平面的兩個(gè)平面互相平行
③若直線與同一平面所成的角相等,則互相平行
④若直線是異面直線,則與都相交的兩條直線是異面直線
其中假命題的個(gè)數(shù)是( 。
A.1 B.2 C.3 D.4
一、 選擇題(本大題共12小題,每小題5分,共60分)
CDAB CDAB ABBA
二、填空題:(本大題共4小題,每小題4分,共16分)
13、 14、
15、 16、
三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。
17、解、由題得,則
0
2
0
遞增
極大值
遞減
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),
所以,當(dāng)時(shí),;當(dāng)時(shí),
18、解、(1)設(shè)甲投球一次命中為事件A,;設(shè)乙投球一次命中為事件B,
則甲、乙兩人在罰球線各投球一次,恰好命中一次的概率
答:甲、乙兩人在罰球線各投球一次,恰好命中一次的概率為。
(2)甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的對(duì)立面是這四次投球中無(wú)一次命中,
所以甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的的概率是
答:甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的的概率是。
19、解、(1)中,
(2)以分別為軸,如圖建立直角坐標(biāo)系,設(shè)
則
所以與平面所成的角為。
20、解:(1)∵
依題意得 ∴
(2)設(shè)第r +1項(xiàng)含x3項(xiàng),
則
∴第二項(xiàng)為含x3的項(xiàng):T2=-2=-18x3
21、解、(1)設(shè),若
得,又,所以
得,而,所以無(wú)解。即直線與直線不可能垂直。
(2)
所以的范圍是。
22、(Ⅰ)解:當(dāng)時(shí),,得,且
,.
所以,曲線在點(diǎn)處的切線方程是,整理得
.。
(Ⅱ)解:
.
令,解得或.
由于,以下分兩種情況討論.
(1)若,當(dāng)變化時(shí),的正負(fù)如下表:
因此,函數(shù)在處取得極小值,且
;
函數(shù)在處取得極大值,且
.
(2)若,當(dāng)變化時(shí),的正負(fù)如下表:
因此,函數(shù)在處取得極小值,且
;
函數(shù)在處取得極大值,且
.
(Ⅲ)證明:由,得,當(dāng)時(shí),
,.
由(Ⅱ)知,在上是減函數(shù),要使,
只要
即
、
設(shè),則函數(shù)在上的最大值為.
要使①式恒成立,必須,即或.
所以,在區(qū)間上存在,使得對(duì)任意的恒成立.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com