22. 已知.的一個極值點. (1)求m與n的關系表達式, (2)求函數的單調遞增區(qū)間. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數f(x)=-x3+bx2+cx+bc

(1)若函數f(x)在x=1處有極值-,試確定bc的值;

(2)在(1)的條件下,曲線y=f(x)+m與x軸僅有一個交點,求實數m的取值范圍;

(3)記g(x)=|fx)|(-1≤x≤1)的最大值為M,若M≥k對任意的b、c恒成立,試求k的取值范圍.

  (參考公式:x3-3bx2+4b3=(x+b)(x2b)2)

查看答案和解析>>

(本小題滿分14分)
已知函數f(x)=-x3+bx2+cx+bc,
(1)若函數f(x)在x=1處有極值-,試確定b、c的值;
(2)在(1)的條件下,曲線y=f(x)+m與x軸僅有一個交點,求實數m的取值范圍;
(3)記g(x)=|fx)|(-1≤x≤1)的最大值為M,若M≥k對任意的b、c恒成立,試求k的取值范圍.
(參考公式:x3-3bx2+4b3=(x+b)(x-2b)2)

查看答案和解析>>


(本小題滿分14分)
已知函數,當時,取得極小值.
(1)求,的值;
(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設是方程的實數根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數,使得恒成立,若存在請求出的值;若不存在請說明理由.

查看答案和解析>>

 

(本小題滿分14分)

已知函數,當時,取得極小值.

(1)求,的值;

(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:

①直線與曲線相切且至少有兩個切點;

②對任意都有.則稱直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設是方程的實數根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數,使得恒成立,若存在請求出的值;若不存在請說明理由.

 

查看答案和解析>>

(本小題滿分14分)

已知函數,當時,取得極小值.

(1)求,的值;

(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:

①直線與曲線相切且至少有兩個切點;

②對任意都有.則稱直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設是方程的實數根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數,使得恒成立,若存在請求出的值;若不存在請說明理由.

查看答案和解析>>


同步練習冊答案