在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中.規(guī)定每人最多投3次,在A處每投進(jìn)一球得3分.在B處每投進(jìn)一球得2分,如果前兩次得分之和超過3分即停止投籃.否則投第三次.某同學(xué)在A處的命中率q為0.25.在B處的命中率為q.該同學(xué)選擇先在A處投一球.以后都在B處投.用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分.其分布列為 0 2 3 4 5 p 0.03 P1 P2 P3 P4 (1) 求q的值, (2) 求隨機(jī)變量的數(shù)學(xué)期望E; (3) 試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小. 解:(1)設(shè)該同學(xué)在A處投中為事件A,在B處投中為事件B,則事件A,B相互獨(dú)立,且P(A)=0.25,, P(B)= q,. 根據(jù)分布列知: =0時(shí)=0.03,所以.q=0.8. (2)當(dāng)=2時(shí), P1= =0.75 q( )×2=1.5 q( )=0.24 當(dāng)=3時(shí), P2 ==0.01, 當(dāng)=4時(shí), P3==0.48, 當(dāng)=5時(shí), P4= =0.24 所以隨機(jī)變量的分布列為 0 2 3 4 5 p 0.03 0.24 0.01 0.48 0.24 隨機(jī)變量的數(shù)學(xué)期望 (3)該同學(xué)選擇都在B處投籃得分超過3分的概率為 ; 該同學(xué)選擇(1)中方式投籃得分超過3分的概率為0.48+0.24=0.72. 由此看來該同學(xué)選擇都在B處投籃得分超過3分的概率大. [命題立意]:本題主要考查了互斥事件的概率,相互獨(dú)立事件的概率和數(shù)學(xué)期望,以及運(yùn)用概率知識(shí)解決問題的能力. 查看更多

 

題目列表(包括答案和解析)

(2009山東卷理)(本小題滿分12分)

     在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q為0.25,在B處的命中率為q,該同學(xué)選擇先在A處投一球,以后都在B處投,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為

            

0          

2             

   3   

   4   

   5   

        p        

0.03          

   P1               

   P2         

P3          

P4              

(1)       求q的值;     

(2)       求隨機(jī)變量的數(shù)學(xué)期望E;

(3)       試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小。

查看答案和解析>>


同步練習(xí)冊(cè)答案