題目列表(包括答案和解析)
已知函數(shù)=.
(Ⅰ)當(dāng)時,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當(dāng)時,=,
當(dāng)≤2時,由≥3得,解得≤1;
當(dāng)2<<3時,≥3,無解;
當(dāng)≥3時,由≥3得≥3,解得≥8,
∴≥3的解集為{|≤1或≥8};
(Ⅱ) ≤,
當(dāng)∈[1,2]時,==2,
∴,有條件得且,即,
故滿足條件的的取值范圍為[-3,0]
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
第三問,
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
.
(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時n=12.
因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列
設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個不同的點(diǎn)().
(1) 當(dāng)時,試寫出拋物線上的三個定點(diǎn)、、的坐標(biāo),從而使得
;
(2)當(dāng)時,若,
求證:;
(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實(shí)得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.
由拋物線定義得到
第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,
故可取滿足條件.
(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
;
所以.
(3) ①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)
② 設(shè),分別過作
拋物線的準(zhǔn)線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)()滿足 ”,即:
“當(dāng)時,若,且點(diǎn)的縱坐標(biāo)()滿足,則”.此命題為真.事實(shí)上,設(shè),
分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱”,即:
“當(dāng)時,若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
設(shè)拋物線:(>0)的焦點(diǎn)為,準(zhǔn)線為,為上一點(diǎn),已知以為圓心,為半徑的圓交于,兩點(diǎn).
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,,三點(diǎn)在同一條直線上,直線與平行,且與只有一個公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運(yùn)算求解能力.
【解析】設(shè)準(zhǔn)線于軸的焦點(diǎn)為E,圓F的半徑為,
則|FE|=,=,E是BD的中點(diǎn),
(Ⅰ) ∵,∴=,|BD|=,
設(shè)A(,),根據(jù)拋物線定義得,|FA|=,
∵的面積為,∴===,解得=2,
∴F(0,1), FA|=, ∴圓F的方程為:;
(Ⅱ) 解析1∵,,三點(diǎn)在同一條直線上, ∴是圓的直徑,,
由拋物線定義知,∴,∴的斜率為或-,
∴直線的方程為:,∴原點(diǎn)到直線的距離=,
設(shè)直線的方程為:,代入得,,
∵與只有一個公共點(diǎn), ∴=,∴,
∴直線的方程為:,∴原點(diǎn)到直線的距離=,
∴坐標(biāo)原點(diǎn)到,距離的比值為3.
解析2由對稱性設(shè),則
點(diǎn)關(guān)于點(diǎn)對稱得:
得:,直線
切點(diǎn)
直線
坐標(biāo)原點(diǎn)到距離的比值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com