已知橢圓的中心在原點(diǎn).焦點(diǎn)在軸上.點(diǎn).分別是橢圓的左.右焦點(diǎn).在橢圓的右準(zhǔn)線上的點(diǎn).滿足線段的中垂線過點(diǎn).直線:為動直線.且直線與橢圓交于不同的兩點(diǎn).. (Ⅰ)求橢圓C的方程, (Ⅱ)若在橢圓上存在點(diǎn).滿足(為坐標(biāo)原點(diǎn)). 求實(shí)數(shù)的取值范圍, 的條件下.當(dāng)取何值時.的面積最大.并求出這個最大值. 鄭州市第四十七中學(xué)高中三年級第一次月考 查看更多

 

題目列表(包括答案和解析)

(14分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且橢圓經(jīng)過圓C: 的圓心C。

(Ⅰ)求橢圓的方程;

(Ⅱ) 設(shè)是橢圓上的一點(diǎn),過點(diǎn)的直線軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.

查看答案和解析>>

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,右準(zhǔn)線的方程為,傾斜角為的直線交橢圓兩點(diǎn),且的中點(diǎn)坐標(biāo)為,設(shè)為橢圓的右頂點(diǎn),為橢圓上兩點(diǎn),且,,三者的平方成等差數(shù)列,則直線斜率之積的絕對值是否為定值,若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為,離心率為

(1)求橢圓的方程;

(2)過點(diǎn)作直線、兩點(diǎn),試問:在軸上是否存在一個定點(diǎn),使為定值?若存在,求出這個定點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,右準(zhǔn)線的方程為,傾斜角為的直線交橢圓兩點(diǎn),且的中點(diǎn)坐標(biāo)為,求橢圓的方程;

查看答案和解析>>

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的四邊形是一個面積為的正方形(記為

(Ⅰ)求橢圓的方程

(Ⅱ)設(shè)點(diǎn)是直線軸的交點(diǎn),過點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在正方形內(nèi)(包括邊界)時,求直線斜率的取值范圍

 

查看答案和解析>>


同步練習(xí)冊答案