凡是“至少 .“唯一 或含有否定詞的命題適宜用反證法. 查看更多

 

題目列表(包括答案和解析)

(1)一般地,用pq分別表示原命題的條件和結(jié)論,用分別表示pq的否定,于是四種命題的形式就是:?

原命題:若pq(p q);?

否命題:若          (     );?

逆命題:若          (     );?

逆否命題:若          (     ).?

(2)四種命題的關(guān)系?

  ?

注意:①一個命題和它的逆否命題同真假,而與它的其他三個命題的真假無此規(guī)律.?

②要嚴格區(qū)別命題的否定與否命題之間的差別.?

對一個命題進行否定,就要對正面敘述的詞語進行否定,而否命題既否定條件又否定結(jié)論.例如,原命題“若∠A=∠B,則a=b”的否定形式為“若∠A=∠B,則ab”,而其否命題則為“若∠A≠∠B,則ab”.?

(3)反證法?

①定義:          .?

②使用反證法的條件.?

(ⅰ)直接證困難較大時;?

(ⅱ)當(dāng)待證命題的結(jié)論中出現(xiàn)“不可能”“不是”“至少”“至多”“唯一”等限制性很強的條件時.?

③一般步驟:?

(ⅰ)          ;?

(ⅱ)          .

查看答案和解析>>

若對于定義在R上的函數(shù)f(x),其函數(shù)圖象是連續(xù)不斷,且存在常數(shù)λ(λ∈R),使得f(x+λ)+λf(x)=0對任意的實數(shù)x成立,則稱f(x)是λ-伴隨函數(shù).有下列關(guān)于λ-伴隨函數(shù)的結(jié)論:
①f(x)=0是常數(shù)函數(shù)中唯一一個λ-伴隨函數(shù);
②f(x)=x2是一個λ-伴隨函數(shù);
12
-
伴隨函數(shù)至少有一個零點.
其中不正確的結(jié)論的序號是
 
.(寫出所有不正確結(jié)論的序號)

查看答案和解析>>

定義域是R的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數(shù)x都成立,則稱f(x)是一個“λ的相關(guān)函數(shù)”.有下列關(guān)于“A的相關(guān)函數(shù)”的結(jié)論:
①f(x)=0是常數(shù)函數(shù)中唯一一個“λ的相關(guān)函數(shù)“;
②f(x)=x2是一個“λ的相關(guān)函數(shù)“;
③“2的相關(guān)函數(shù)”至少有一個零點.
其中正確結(jié)論的個數(shù)是( �。�
A、1B、2C、3D、0

查看答案和解析>>

設(shè)S是至少含有兩個元素的集合.在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素a*b與之對應(yīng)).若對于任意的a,b∈S,有a*(b*a)=b,則對任意的a,b∈S,下列等式中不能成立的是( �。�

查看答案和解析>>

設(shè)S是至少含有兩個元素的集合,在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素a*b與之對應(yīng)).已知對任意的a,b∈S,有a*(b*a)=b;則對任意的a,b∈S,給出下面四個等式:
(1)(a*b)*a=a  (2)[a*(b*a)]*(a*b)=a   (3)b*(a*b)=a  (4)(a*b)*[b*(a*b)]=b  
上面等式中恒成立的有( �。�

查看答案和解析>>


同步練習(xí)冊答案