教法:以問題為載體.有引導(dǎo)的對話.讓學(xué)生經(jīng)歷知識的形成過程和發(fā)展過程.從而突出教學(xué)重點.并采用多媒體教學(xué).增加課堂容量.有利于學(xué)生活動的充分展開. 查看更多

 

題目列表(包括答案和解析)

(2009•上海模擬)已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項公式;
(3)對上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個問題,并做出解答.(根據(jù)所提問題及解答的完整程度,分檔次給分)

查看答案和解析>>

如圖,在長方體AC1中,AB=BC=2,AA1=
2
,點E、F分別是面A1C1、面BC1的中心.以D為坐標(biāo)原點,DA、DC、DD1所為直線為x,y,z軸建立空間直角坐標(biāo)系,試用向量方法解決下列問題:
(1)求異面直線AF和BE所成的角;
(2)求直線AF和平面BEC所成角的正弦值.

查看答案和解析>>

若數(shù)列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來求am,bm的值,其中m為給定的數(shù)據(jù)(m≥2,m∈N).右圖算法中,虛線框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當(dāng)a≠b,5a≠4b時,{an-bn}及{5an-4bn}均為等比數(shù)列,請按答紙題要求,完成一個問題證明,并填空.
證明:{an-bn}是等比數(shù)列,過程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項,以
3
3
為公比的等比數(shù)列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項,以
2
2
為公比的等比數(shù)列
(3)若將an,bn寫成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請回答下面問題:
①寫出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個元素,且該元素為Bn中所有元素的和,請寫出滿足要求的一組P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計算過程如下:

查看答案和解析>>

定義在[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=cf(x)(c為正常數(shù));
②當(dāng)2≤x≤4時,f(x)=1-|x-3|.試解答下列問題:
(1)設(shè)c>2,方程f(x)=2的根由小到大依次記為a1,a2,a3,…,an,…,試證明:數(shù)列a2n-1+a2n為等比數(shù)列;
(2)①是否存在常數(shù)c,使函數(shù)的所有極大值點均落在同一條直線上?若存在,試求出c的所有取值并寫出直線方程;若不存在,試說明理由;②是否存在常數(shù)c,使函數(shù)的所有極大值點均落在同一條以原點為頂點的拋物線上?若存在,試求出c的所有取值并寫出拋物線方程;若不存在,試說明理由.

查看答案和解析>>

據(jù)報道,某公司的33名職工的月工資(以元為單位)如下:
職務(wù) 董事長 副董事長 董事 總經(jīng)理 經(jīng)理 管理員 職員
人數(shù) 1 1 2 1 5 3 20
工資 5 500 5 000 3 500 3 000 2 500 2 000 1 500
(1)求該公司職工月工資的平均數(shù)、中位數(shù)、眾數(shù);
(2)假設(shè)副董事長的工資從5 000元提升到20 000元,董事長的工資從5 500元提升到30 000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元)
(3)你認(rèn)為哪個統(tǒng)計量更能反映這個公司員工的工資水平?結(jié)合此問題談一談你的看法.

查看答案和解析>>


同步練習(xí)冊答案