(1)證明函數(shù)y= (+1)在上是減函數(shù), (2)判斷函數(shù)y=(+1)在上是增減性. ∴函數(shù)在上是增函數(shù) 證明:(1)設(shè).且,則 又在上是減函數(shù) ∴ 即 ∴函數(shù)y= (+1)在上是減函數(shù)? (2)設(shè).且,則 又在上是減函數(shù) ∴ 即 ∴y= (+1)在上是增函數(shù) 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)是定義在(0,+∞)上的單調(diào)減函數(shù),且滿(mǎn)足條件f(2)=1.且f(xy)=f(x)+f(y);
(1)證明:f(1)=0;
(2)若f(x)+f(x-3)≥2成立,求x的取值范圍.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo).導(dǎo)函數(shù)f(x)是減函數(shù),且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當(dāng)x∈(0,+∞)時(shí),g(x)≥f(x);
(3)若關(guān)于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿(mǎn)足的關(guān)系.

查看答案和解析>>

函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,y,均有f(x+y)=f(x)+f(y),且當(dāng)x>0,f(x)<0.
(1)判斷函數(shù)f(x)的奇偶性并說(shuō)明理由;
(2)證明:函數(shù)f(x)在R上是減函數(shù);
(3)若y=f(ax2-a2x)-f[(a+1)(x-1)]在x∈(0,2)上有零點(diǎn),求a的范圍.

查看答案和解析>>

函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,y,均有f(x+y)=f(x)+f(y),且當(dāng)x>0,f(x)<0.
(1)判斷函數(shù)f(x)的奇偶性并說(shuō)明理由;
(2)證明:函數(shù)f(x)在R上是減函數(shù);
(3)若y=f(ax2-a2x)-f[(a+1)(x-1)]在x∈(0,2)上有零點(diǎn),求a的范圍.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo).導(dǎo)函數(shù)f(x)是減函數(shù),且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當(dāng)x∈(0,+∞)時(shí),g(x)≥f(x);
(3)若關(guān)于x的不等式數(shù)學(xué)公式在(0,+∞)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿(mǎn)足的關(guān)系.

查看答案和解析>>


同步練習(xí)冊(cè)答案