(2)取PC的中點(diǎn)N.連接AN.由是邊長為1的正三角形.可知AN⊥PC.由(1)BC⊥平面PAC.可知AN⊥BC.∴AN⊥平面PCBM. 查看更多

 

題目列表(包括答案和解析)

如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求證:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二問中解:取PD的中點(diǎn)E,連接CE、BE,

為正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,

∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。

 

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
精英家教網(wǎng)
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網(wǎng)
(1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

如圖,在四棱錐P-ABCD中,E為PC的中點(diǎn).,側(cè)面PAD是等邊三角形,底面ABCD是梯形,且AB∥CD,CD=2AB.
(1)證明:直線BE∥平面PAD;
(2)求異面直線AD和BE所成的角.

查看答案和解析>>

(2012•江門一模)如圖,已知四棱柱ABCD-A1B1C1D1的俯視圖是邊長為3的正方形,側(cè)視圖是長為3寬為
3
的矩形.
(1)求該四棱柱的體積;
(2)取DD1的中點(diǎn)E,證明:面BCE⊥面ADD1A1

查看答案和解析>>

已知點(diǎn)P在△ABC所在平面外,PA=PB,CB⊥平面PAB,M為PC的中點(diǎn),N在AB上,如圖所示,問當(dāng)N在AB的什么位置上時(shí),有MN⊥AB?

查看答案和解析>>


同步練習(xí)冊答案