26.解:(1)由已知.得.. . . .············································································································ 設(shè)過(guò)點(diǎn)的拋物線的解析式為. 將點(diǎn)的坐標(biāo)代入.得. 將和點(diǎn)的坐標(biāo)分別代入.得 ··································································································· 解這個(gè)方程組.得 故拋物線的解析式為.··························································· (2)成立.························································································· 點(diǎn)在該拋物線上.且它的橫坐標(biāo)為. 點(diǎn)的縱坐標(biāo)為.······················································································· 設(shè)的解析式為. 將點(diǎn)的坐標(biāo)分別代入.得 解得 的解析式為.········································································ ..··························································································· 過(guò)點(diǎn)作于點(diǎn). 則. . . 又. . . .··········································································································· . (3)點(diǎn)在上...則設(shè). ... ①若.則. 解得..此時(shí)點(diǎn)與點(diǎn)重合. .··········································································································· ②若.則. 解得 ..此時(shí)軸. 與該拋物線在第一象限內(nèi)的交點(diǎn)的橫坐標(biāo)為1. 點(diǎn)的縱坐標(biāo)為. .······································································································· ③若.則. 解得..此時(shí).是等腰直角三角形. 過(guò)點(diǎn)作軸于點(diǎn). 則.設(shè). . . 解得. .··········································· 綜上所述.存在三個(gè)滿足條件的點(diǎn). 即或或. 26.如圖.已知拋物線經(jīng)過(guò)點(diǎn).拋物線的頂點(diǎn)為.過(guò)作射線.過(guò)頂點(diǎn)平行于軸的直線交射線于點(diǎn).在軸正半軸上.連結(jié). (1)求該拋物線的解析式, (2)若動(dòng)點(diǎn)從點(diǎn)出發(fā).以每秒1個(gè)長(zhǎng)度單位的速度沿射線運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.問(wèn)當(dāng)為何值時(shí).四邊形分別為平行四邊形?直角梯形?等腰梯形? (3)若.動(dòng)點(diǎn)和動(dòng)點(diǎn)分別從點(diǎn)和點(diǎn)同時(shí)出發(fā).分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿和運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為.連接.當(dāng)為何值時(shí).四邊形的面積最小?并求出最小值及此時(shí)的長(zhǎng). *26.解:(1)拋物線經(jīng)過(guò)點(diǎn). ·························································································· 1分 二次函數(shù)的解析式為:·················································· 3分 (2)為拋物線的頂點(diǎn)過(guò)作于.則. ··················································· 4分 當(dāng)時(shí).四邊形是平行四邊形 ················································ 5分 當(dāng)時(shí).四邊形是直角梯形 過(guò)作于.則 (如果沒(méi)求出可由求) ····························································································· 6分 當(dāng)時(shí).四邊形是等腰梯形 綜上所述:當(dāng).5.4時(shí).對(duì)應(yīng)四邊形分別是平行四邊形.直角梯形.等腰梯形.·· 7分 及已知.是等邊三角形 則 過(guò)作于.則········································································· 8分 =·································································································· 9分 當(dāng)時(shí).的面積最小值為··································································· 10分 此時(shí) ······················································ 11分 查看更多

 

題目列表(包括答案和解析)

已知四邊形ABCD中,P是對(duì)角線BD上的一點(diǎn),過(guò)P作MN∥AD,EF∥CD,分別交AB、CD、AD、BC于點(diǎn)M、N、E、F,設(shè)a=PM•PE,b=PN•PF,解答下列問(wèn)題:
(1)當(dāng)四邊形ABCD是矩形時(shí),見(jiàn)圖1,請(qǐng)判斷a與b的大小關(guān)系,并說(shuō)明理由;
(2)當(dāng)四邊形ABCD是平行四邊形,且∠A為銳角時(shí),見(jiàn)圖2,(1)中的結(jié)論是否成立?并說(shuō)明理由;
(3)在(2)的條件下,設(shè)
BP
PD
=k
,是否存在這樣的實(shí)數(shù)k,使得
S平行四邊形PEAM
S△ABD
=
4
9
?若存在,請(qǐng)求出滿足條件的所有k的值;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),若拋物線的對(duì)稱軸為x=1,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線上一點(diǎn)D的坐標(biāo)為(-3,12),過(guò)點(diǎn)B、D的直線與拋物線的對(duì)稱軸交于點(diǎn)E.問(wèn):是否存在這樣的點(diǎn)F,使得以點(diǎn)B、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若在BD上存在一點(diǎn)P,使得直線AP將四邊形ACBD分成了面積相等的兩部分,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),若拋物線的對(duì)稱軸為x=1,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線上一點(diǎn)D的坐標(biāo)為(-3,12),過(guò)點(diǎn)B、D的直線與拋物線的對(duì)稱軸交于點(diǎn)E.問(wèn):是否存在這樣的點(diǎn)F,使得以點(diǎn)B、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若在BD上存在一點(diǎn)P,使得直線AP將四邊形ACBD分成了面積相等的兩部分,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),若拋物線的對(duì)稱軸為x=1,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線上一點(diǎn)D的坐標(biāo)為(-3,12),過(guò)點(diǎn)B、D的直線與拋物線的對(duì)稱軸交于點(diǎn)E.問(wèn):是否存在這樣的點(diǎn)F,使得以點(diǎn)B、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若在BD上存在一點(diǎn)P,使得直線AP將四邊形ACBD分成了面積相等的兩部分,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知拋物線yx2+4xm(m為常數(shù))經(jīng)過(guò)點(diǎn)(0,4).

(1)求m的值;

(2)將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對(duì)稱軸(設(shè)為直線l2)與平移前的拋物線的對(duì)稱軸(設(shè)為直線l1)關(guān)于y軸對(duì)稱;它所對(duì)應(yīng)的函數(shù)的最小值為-8.

①試求平移后的拋物線的解析式;

②試問(wèn)在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案