通過解決實際問題.深入理解數(shù)學概念的本質 很多數(shù)學概念都有其實際背景, 它的產(chǎn)生必然離不開現(xiàn)實世界,離不開生活實際, 反過來, 在概念形成后, 學會在實際問題中運用所學概念, 這也是深入理解概念本質的有效途徑.如學習“等比數(shù)列 概念之后.可解決實際問題:“今有出門望見九堤.堤有九木.木有九枝.枝有九巢.巢有九禽.禽有九雛.雛有九毛.毛有九色.問各有幾何?.利用統(tǒng)計中的“方差 概念, 通過對幾組數(shù)據(jù)的分析, 判斷某事件(如射擊.成績.機器性能等)的穩(wěn)定性等等, 通過解決這些實際問題,能夠極大提高學生運用概念的靈活性,并對概念的本質有更深入的理解. 總之.在概念教學中.要根據(jù)課標對概念教學的具體要求.創(chuàng)造性地使用教材.優(yōu)化概念教學設計.把握概念教學過程.真正使學生在參與的過程中產(chǎn)生內心的體驗和創(chuàng)造. 參考文獻: 查看更多

 

題目列表(包括答案和解析)

某單位最近組織了一次健身活動,活動分為登山組和游泳組,且每個職工至多參加了其中一組。在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山組的職工占參加活動總人數(shù)的,且該組中,青年人占50%,中年人占40%,老年人占10%。為了了解各組不同的年齡層次的職工對本次活動的滿意程度,現(xiàn)用分層抽樣的方法從參加活動的全體職工中抽取一個容量為200的樣本。試確定

(Ⅰ)游泳組中,青年人、中年人、老年人分別所占的比例;

(Ⅱ)游泳組中,青年人、中年人、老年人分別應抽取的人數(shù)。

本小題主要考查分層抽樣的概念和運算,以及運用統(tǒng)計知識解決實際問題的能力。

查看答案和解析>>

每次拋擲一枚骰子(六個面上分別標以數(shù)字

(I)連續(xù)拋擲2次,求向上的數(shù)不同的概率;

(II)連續(xù)拋擲2次,求向上的數(shù)之和為6的概率;

(III)連續(xù)拋擲5次,求向上的數(shù)為奇數(shù)恰好出現(xiàn)3次的概率。

本小題主要考查概率的基本知識,運用數(shù)學知識解決實際問題的能力。滿分12分。

查看答案和解析>>

在某校舉行的數(shù)學競賽中,全體參賽學生的競賽成績近似服從正態(tài)分布。已知成績在90分以上(含90分)的學生有12名。

(Ⅰ)、試問此次參賽學生總數(shù)約為多少人?

(Ⅱ)、若該校計劃獎勵競賽成績排在前50名的學生,試問設獎的分數(shù)線約為多少分?

可共查閱的(部分)標準正態(tài)分布表

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

點評:本小題主要考查正態(tài)分布,對獨立事件的概念和標準正態(tài)分布的查閱,考查運用概率統(tǒng)計知識解決實際問題的能力。

查看答案和解析>>

某市投資甲、乙兩個工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內,甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.

(Ⅰ)求數(shù)列,的通項公式;

(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個工廠被另一個工廠兼并.

【解析】本試題主要考查數(shù)列的通項公式的運用。

第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二問,考查等差數(shù)列與等比數(shù)列的綜合,考查用數(shù)列解決實際問題,其步驟是建立數(shù)列模型,進行計算得出結果,再反饋到實際中去解決問題.由于比較兩個工廠的產(chǎn)量時兩個函數(shù)的形式較特殊,不易求解,故采取了列舉法,數(shù)據(jù)列舉時作表格比較簡捷.

解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的產(chǎn)量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工廠將被乙工廠兼并

 

查看答案和解析>>

沿海地區(qū)某農(nóng)村在2002年底共有人口1480人,全年工農(nóng)業(yè)生產(chǎn)總值為3180萬元.2003年起計劃10年內該村的總產(chǎn)值每年增加60萬元,人口每年凈增A人,設從2003年起計劃10內該村的總產(chǎn)值每年增加60萬元,人口每年凈增A人,設從2003年起的第x年(2003年為第一年)該村人均產(chǎn)值為y萬元.

(1)    寫出yx之間的函數(shù)關系式;

(2)    為使該村的人均產(chǎn)值年年都有增長,那么該村每年人口的凈增不能超過多少人?

本小題主要考查函數(shù)知識、函數(shù)的單調性,考查數(shù)學建模,運用所學知識解決實際問題的能力.

查看答案和解析>>


同步練習冊答案