15.已知數(shù)列{an}中.前n項(xiàng)和為Sn.點(diǎn)(an+1.Sn+1)在直線y=4x-2上.其中n=1,2,3-. (1)設(shè)bn=an+1-2an.且a1=1.求證數(shù)列{bn}是等比數(shù)列, (2)令f(x)=b1x+b2x2+-+bnxn.求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與6n2-3n的大小. 解:(1)由已知點(diǎn)(an+1.Sn+1)在直線y=4x-2上. ∴Sn+1=4(an+1)-2. 即Sn+1=4an+2.(n=1,2,3.-) ∴Sn+2=4an+1+2. 兩式相減.得Sn+2-Sn+1=4an+1-4an. 即an+2=4an+1-4an. an+2-2an+1=2(an+1-2an). ∵bn=an+1-2an.(n=1,2,3.-) ∴bn+1=2bn. 由S2=a1+a2=4a1+2.a1=1. 解得a2=5.b1=a2-2a1=3. ∴數(shù)列{bn}是首項(xiàng)為3.公比為2的等比數(shù)列. 知bn=3·2n-1. ∵f(x)=b1x+b2x2+--+bnxn ∴f′(x)=b1+2b2x+-+nbnxn-1. 從而f′(1)=b1+2b2+-+nbn =3+2·3·2+3·3·22+-+n·3·2n-1 =3(1+2·2+3·22+-+n·2n-1) 設(shè)Tn=1+2·2+3·22+-+n·2n-1. 設(shè)2Tn=2+2·22+3·23+-+(n-1)·2n-1+n·2n. 兩式相減.得-Tn=1+2+22+23+-+2n-1-n·2n=-n·2n. ∵Tn=(n-1)·2n+1. ∴f′(1)=3(n-1)·2n+3. 由于f′(1)-(6n2-3n)=3[(n-1)·2n+1-2n2+n]=3(n-1)[2n-(2n+1)]. 設(shè)g(n)=f′(1)-(6n2-3n). 當(dāng)n=1時(shí).g(1)=0.∴f′(1)=6n2-3n, 當(dāng)n=2時(shí).g(2)=-3<0.∴f′(1)<6n2-3n, 當(dāng)n≥3時(shí).n-1>0.又2n=(1+1)n=C+C+-+C+C≥2n+2>2n+1. ∴(n-1)[2n-(2n+1)]>0.即g(n)>0. 從而f′(1)>6n2-3n. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與6n2-3n的大。

查看答案和解析>>

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與
6n2-3n的大。

查看答案和解析>>

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與6n2-3n的大。

查看答案和解析>>

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與6n2-3n的大。

查看答案和解析>>

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2上,其中n=1,2,3,….

(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;

(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)并比較與6n2-3n的大。

查看答案和解析>>


同步練習(xí)冊(cè)答案