A.(1.+) B.(-.3) C. D.(1.3) 查看更多

 

題目列表(包括答案和解析)

.(本小題滿分12分).

如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

 

 

 

(1) 求該弦橢圓的方程;

(2)求弦AC中點的橫坐標;

(3)設弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

 

 

查看答案和解析>>

,,  則

A.(1,1)      B.(-1,-1)

C.(3,7)    D.(-3,-7)

 

查看答案和解析>>

.(本小題滿分12分).
如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;
(2)求弦AC中點的橫坐標;
(3)設弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

(本小題滿分13分)已知A,B分別是直線yxy=-x上的兩個動點,線段AB的長為2,DAB的中點.
(1)求動點D的軌跡C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點PQ,
①當|PQ|=3時,求直線l的方程;
②設點E(m,0)是x軸上一點,求當·恒為定值時E點的坐標及定值.

查看答案和解析>>

(本小題滿分13分)已知A,B分別是直線yxy=-x上的兩個動點,線段AB的長為2,DAB的中點.
(1)求動點D的軌跡C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點P、Q,
①當|PQ|=3時,求直線l的方程;
②設點E(m,0)是x軸上一點,求當·恒為定值時E點的坐標及定值.

查看答案和解析>>

一、選擇題

<li id="ejxrj"><dl id="ejxrj"></dl></li>
<tt id="ejxrj"><pre id="ejxrj"></pre></tt>

20080422

二、填空題

13.2    14.3   15.   16.①③④

三、解答題

17.解:(1)……………………3分

……………………6分

(2)因為

………………9分

……………………12分

文本框:  18.方法一:

(1)證明:連結(jié)BD,

∵D分別是AC的中點,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2,

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2,

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設點E到平面PBC的距離為h.

∵VP―EBC=VE―PBC,

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

(2)解:解:取AB的中點E,連結(jié)DE、PE,

過點D作AB的平行線交BC于點F,以D為

      • DP為z軸,建立如圖所示的空間直角坐標系.

        則D(0,0,0),P(0,0,),

        E(),B=(

        上平面PAB的一個法向量,

        則由

        這時,……………………6分

        顯然,是平面ABC的一個法向量.

        ∴二面角P―AB―C的大小是……………………8分

        (3)解:

        平面PBC的一個法向量,

        是平面PBC的一個法向量……………………10分

        ∴點E到平面PBC的距離為………………12分

        19.解:(1)由題設,當價格上漲x%時,銷售總金額為:

           (2)

        ……………………3分

        當x=50時,

        即該噸產(chǎn)品每噸的價格上漲50%時,銷售總最大.……………………6分

        (2)由(1)

        如果上漲價格能使銷假售總金額增加,

        則有……………………8分

        即x>0時,

        注意到m>0

          ∴   ∴

        ∴m的取值范圍是(0,1)…………………………12分

        20.解(1)由已知,拋物線,焦點F的坐標為F(0,1)………………1分

        l與y軸重合時,顯然符合條件,此時……………………3分

        l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當且僅當直線l通過點()設l的斜率為k,則直線l的方程為

        由已知可得………5分

        解得無意義.

        因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

        (2)由已知可設直線l的方程為……………………8分

        則AB所在直線為……………………9分

        代入拋物線方程………………①

        的中點為

        代入直線l的方程得:………………10分

        又∵對于①式有:

        解得m>-1,

        l在y軸上截距的取值范圍為(3,+)……………………12分

        21.解:(1)在………………1分

        兩式相減得:

        整理得:……………………3分

        時,,滿足上式,

        (2)由(1)知

        ………………8分

        ……………………10分

        …………………………12分

        22.解:(1)…………………………1分

        是R上的增函數(shù),故在R上恒成立,

        在R上恒成立,……………………2分

        …………3分

        故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

        ∴當

        的最小值………………6分

        亦是R上的增函數(shù)。

        故知a的取值范圍是……………………7分

        (2)……………………8分

        ①當a=0時,上單調(diào)遞增;…………10分

        可知

        ②當

        即函數(shù)上單調(diào)遞增;………………12分

        ③當時,有

        即函數(shù)上單調(diào)遞增!14分

         


        同步練習冊答案