(二)互動(dòng)交流.探求新知. 1. 觀察數(shù)據(jù).體會(huì)模型. 教師引導(dǎo)學(xué)生觀察例1表格中三種方案的數(shù)量變化情況.體會(huì)三種函數(shù)的增長差異.說出自己的發(fā)現(xiàn).并進(jìn)行交流. 2. 作出圖象.描述特點(diǎn). 教師引導(dǎo)學(xué)生借助計(jì)算器作出三個(gè)方案的函數(shù)圖象.分析三種方案的不同變化趨勢.并進(jìn)行描述.為方案選擇提供依據(jù). 查看更多

 

題目列表(包括答案和解析)

(2009•閔行區(qū)二模)(理)在長方體ABCD-A1B1C1D1中,AB=2,AD=1,AA1=1,點(diǎn)E在棱AB上移動(dòng).
(1)探求AE等于何值時(shí),直線D1E與平面AA1D1D成45°角;
(2)點(diǎn)E移動(dòng)為棱AB中點(diǎn)時(shí),求點(diǎn)E到平面A1DC1的距離.

查看答案和解析>>

(2012•江蘇二模)如圖,已知橢圓C:
x2
4
+y2=1
,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若
OP
=m
OA
+n
OB
,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩個(gè)動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.

查看答案和解析>>

已知定義在R上的二次函數(shù)R(x)=ax2+bx+c滿足2R(-x)-2R(x)=0,且R(x)的最小值為0,函數(shù)h(x)=lnx,又函數(shù)f(x)=h(x)-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當(dāng)a≤
1
2
時(shí),若x0∈[1,3],求f(x0)的最小值;
(III)若二次函數(shù)R(x)圖象過(4,2)點(diǎn),對(duì)于給定的函數(shù)f(x)圖象上的點(diǎn)A(x1,y1),當(dāng)x1=
3
2
時(shí),探求函數(shù)f(x)圖象上是否存在點(diǎn)B(x2,y2)(x2>2),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

對(duì)某班學(xué)生是更喜歡體育還是更喜歡文娛進(jìn)行調(diào)查,根據(jù)調(diào)查得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(I)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表;
(II)若要從更喜歡體育的學(xué)生中隨機(jī)選3人,組成體育愛好者交流小組,去外校參觀學(xué)習(xí),求小組中含女生人數(shù)的分布列和期望.

查看答案和解析>>

已知定義在R上的二次函數(shù)R(x)=ax2+bx(a>0)是偶函數(shù),函數(shù)f(x)=2lnx-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當(dāng)a≤1時(shí),若x0∈[1,2],求f(x0)的最大值;
(III)若二次函數(shù)R(x)圖象過(1,1)點(diǎn),對(duì)于給定的函數(shù)f(x)圖象上的點(diǎn)A(x1,y1),當(dāng)x1=
1e
時(shí),探求函數(shù)f(x)圖象上是否存在點(diǎn)B(x2,y2)(x2>1),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>


同步練習(xí)冊答案