命題的概念:可以判斷真假的語句叫命題正確的叫真命題.錯誤的叫假命題 例如:①11>5 ②3是15的約數(shù) ③0.7是整數(shù) ①②是真命題.③是假命題 反例:④3是15的約數(shù)嗎? ⑤ x>8 都不是命題.不涉及真假 無法判斷真假 “這是一棵大樹 , “x<2 . 都不能叫命題.由于“大樹 沒有界定.就不能判斷“這是一棵大樹 的真假.由于x是未知數(shù).也不能判斷“x<2 是否成立. 注意:①初中教材中命題的定義是:判斷一件事情的句子叫做命題,這里的定義是:可以判斷真假的語句叫做命題.說法不同.實(shí)質(zhì)是一樣的 ②判斷命題的關(guān)鍵在于能不能判斷其真假.即能不能判斷其是否成立,不能判斷真假的語句.就不是命題. ③與命題相關(guān)的概念是開語句例如.x<2.x-5=3.=0.這些語句中含有變量x或y.在沒有給定這些變量的值之前.是無法確定語句真假的.這種含有變量的語句叫做開語句(有的邏輯書也稱之為條件命題). 在教學(xué)時.不要在判斷一個語句是不是命題上下功夫.因?yàn)檫@個工作過于復(fù)雜.要求學(xué)生能夠從正面的例子了解命題的概念就可以了. 查看更多

 

題目列表(包括答案和解析)

(2012•徐匯區(qū)一模)對于數(shù)列{xn},從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項(xiàng)為a1,公差為d的無窮等差數(shù)列{an}的子數(shù)列問題,為此,他取了其中第一項(xiàng)a1,第三項(xiàng)a3和第五項(xiàng)a5
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無窮等差數(shù)列{an}中,是否存在無窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請給出數(shù)列{bn}的通項(xiàng)公式并證明;若不存在,說明理由;
(3)他在研究過程中猜想了一個命題:“對于首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>1)的無窮等比數(shù)列{cn},總可以找到一個子數(shù)列{bn},使得{dn}構(gòu)成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項(xiàng)ck,cm,cn(k<m<n),由ck+cn與2cm的大小關(guān)系去判斷該命題是否正確.他將得到什么結(jié)論?

查看答案和解析>>

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對于數(shù)列,從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個命題:“對于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

對于數(shù)列{xn},從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項(xiàng)為a1,公差為d的無窮等差數(shù)列{an}的子數(shù)列問題,為此,他取了其中第一項(xiàng)a1,第三項(xiàng)a3和第五項(xiàng)a5
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無窮等差數(shù)列{an}中,是否存在無窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請給出數(shù)列{bn}的通項(xiàng)公式并證明;若不存在,說明理由;
(3)他在研究過程中猜想了一個命題:“對于首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>1)的無窮等比數(shù)列{cn},總可以找到一個子數(shù)列{bn},使得{dn}構(gòu)成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項(xiàng)ck,cm,cn(k<m<n),由ck+cn與2cm的大小關(guān)系去判斷該命題是否正確.他將得到什么結(jié)論?

查看答案和解析>>


同步練習(xí)冊答案