題目列表(包括答案和解析)
(本小題滿分12分)
假設某班級教室共有4扇窗戶,在每天上午第三節(jié)課上課預備鈴聲響起時,每扇窗戶或被敞開或被關閉,且概率均為0.5,記此時教室里敞開的窗戶個數(shù)為.
(1)求的分布列,以及的數(shù)學期望;
(2)若此時教室里有兩扇或兩扇以上的窗戶被關閉,班長就會將關閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時該教室里敞開的窗戶個數(shù)為,求的數(shù)學期望.
(本題滿分12分)
在高二年級某班學生在數(shù)學校本課程選課過程中,已知第一小組與第二小組各有六位同學.每位同學都只選了一個科目,第一小組選《數(shù)學運算》的有1人,選《數(shù)學解題思想與方法》的有5人,第二小組選《數(shù)學運算》的有2人,選《數(shù)學解題思想與方法》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析選課情況.
(Ⅰ)求選出的4 人均選《數(shù)學解題思想與方法》的概率;
(Ⅱ)設為選出的4個人中選《數(shù)學運算》的人數(shù),求的分布列和數(shù)學期望.
(本題滿分12分)
在高二年級某班學生在數(shù)學校本課程選課過程中,已知第一小組與第二小組各有六位同學.每位同學都只選了一個科目,第一小組選《數(shù)學運算》的有1人,選《數(shù)學解題思想與方法》的有5人,第二小組選《數(shù)學運算》的有2人,選《數(shù)學解題思想與方法》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析選課情況.
(Ⅰ)求選出的4 人均選《數(shù)學解題思想與方法》的概率;
(Ⅱ)設為選出的4個人中選《數(shù)學運算》的人數(shù),求的分布列和數(shù)學期望.
(本題滿分12分)
某校為了探索一種新的教學模式,進行了一項課題實驗,乙班為實驗班,甲班為對比班,甲乙兩班的人數(shù)均為50人,一年后對兩班進行測試,成績?nèi)缦卤恚ǹ偡郑?50分):
甲班
成績 |
|||||
頻數(shù) |
4 |
20 |
15 |
10 |
1 |
乙班
成績 |
|||||
頻數(shù) |
1 |
11 |
23 |
13 |
2 |
(1)現(xiàn)從甲班成績位于內(nèi)的試卷中抽取9份進行試卷分析,請問用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果;
(2)根據(jù)所給數(shù)據(jù)可估計在這次測試中,甲班的平均分是101.8,請你估計乙班的平均分,并計算兩班平均分相差幾分;
(3)完成下面2×2列聯(lián)表,你認為在犯錯誤的概率不超過0.025的前提下, “這兩個班在這次測試中成績的差異與實施課題實驗有關”嗎?并說明理由。
|
成績小于100分 |
成績不小于100分 |
合計 |
甲班 |
26 |
50 |
|
乙班 |
12 |
50 |
|
合計 |
36 |
64 |
100 |
附:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
18.
(本題滿分12分)
某校為了探索一種新的教學模式,進行了一項課題實驗,乙班為實驗班,甲班為對比班,甲乙兩班的人數(shù)均為50人,一年后對兩班進行測試,成績?nèi)缦卤恚ǹ偡郑?50分):
甲班
成績 | |||||
頻數(shù) | 4 | 20 | 15 | 10 | 1 |
成績 | |||||
頻數(shù) | 1 | 11 | 23 | 13 | 2 |
| 成績小于100分 | 成績不小于100分 | 合計 |
甲班 | 26 | 50 | |
乙班 | 12 | 50 | |
合計 | 36 | 64 | 100 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
1
2
3
4
5
6
7
8
9
10
11
12
D
B
B
B
C
C
B
B
B
C
C
C
13 400 14
15 4 16
17(本小題滿分12分)解:(1)由已知得
…………………….6分
(2)
………………………….……….12分
18. (本小題滿分12分)解:記“甲從第一小組的10張票中任抽1張,抽到足球票”為事件A,“乙從第二小組的10張票中任抽1張,抽到足球票”為事件B;記“甲從第一小組的10張票中任抽1張,抽到排球票”為事件,“乙從張二小組的10張票中任抽1張,抽到排球票”為事件,于是
……………………………………2分
由于甲(或乙)是否抽到足球票,對乙(或甲)是否抽到足球票沒有影響,因此A與B是相互獨立事件!4分
(1)甲、乙兩人都抽到足球票就是事件A、B同時發(fā)生,根據(jù)相互獨立事件的乘法概率公式,得到 ………………………7分
因此,兩人都抽到足球票的概率是 ………………………8分
(2)甲、乙兩人均未抽到足球票(事件、同時發(fā)生)的概率為
………………………9分
所以,兩人中至少有1人抽到足球票的概率為
因此,兩人中至少有1人抽到足球票的概率是 ………………………12分
19.(本小題滿分12分)
|