題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)在軸上,點(diǎn)在軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)過(guò)的直線與軌跡交于、兩點(diǎn),又過(guò)、作軌跡的切線、,當(dāng),求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。
1
2
3
4
5
6
7
8
9
10
11
12
D
B
B
B
C
C
B
B
B
C
C
C
13 400 14
15 4 16
17(本小題滿分12分)解:(1)由已知得
…………………….6分
(2)
………………………….……….12分
18. (本小題滿分12分)解:記“甲從第一小組的10張票中任抽1張,抽到足球票”為事件A,“乙從第二小組的10張票中任抽1張,抽到足球票”為事件B;記“甲從第一小組的10張票中任抽1張,抽到排球票”為事件,“乙從張二小組的10張票中任抽1張,抽到排球票”為事件,于是
……………………………………2分
由于甲(或乙)是否抽到足球票,對(duì)乙(或甲)是否抽到足球票沒(méi)有影響,因此A與B是相互獨(dú)立事件!4分
(1)甲、乙兩人都抽到足球票就是事件A、B同時(shí)發(fā)生,根據(jù)相互獨(dú)立事件的乘法概率公式,得到 ………………………7分
因此,兩人都抽到足球票的概率是 ………………………8分
(2)甲、乙兩人均未抽到足球票(事件、同時(shí)發(fā)生)的概率為
………………………9分
所以,兩人中至少有1人抽到足球票的概率為
因此,兩人中至少有1人抽到足球票的概率是 ………………………12分
19.(本小題滿分12分)
|