(Ⅰ)求函數(shù)的單調區(qū)間和最小值, 查看更多

 

題目列表(包括答案和解析)

 已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間和最小值;

(Ⅱ)若函數(shù)上是最小值為,求的值;

(Ⅲ)當(其中=2.718 28…是自然對數(shù)的底數(shù)).

 

查看答案和解析>>

已知函數(shù)
(Ⅰ)求函數(shù)的單調區(qū)間和最小值;
(Ⅱ)若函數(shù)上是最小值為,求的值;
(Ⅲ)當(其中="2.718" 28…是自然對數(shù)的底數(shù)).

查看答案和解析>>

已知函數(shù)
(Ⅰ)求函數(shù)的單調區(qū)間和最小值;
(Ⅱ)若函數(shù)上是最小值為,求的值;
(Ⅲ)當(其中="2.718" 28…是自然對數(shù)的底數(shù)).

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間和最小正周期;

(Ⅱ)求函數(shù)上的最大值和最小值

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間和最小正周期;

(Ⅱ)求函數(shù)上的最大值和最小值

查看答案和解析>>

 

一.選擇題   1-5   6-10   11-12     BBDBC  CBACC  DA

 

二.填空題   13. 1 ;   14. 2;    15. ;   16.  -1

 

三、解答題

17.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,則a=.

由f()=,得+-=,∴b=1,…………2分

∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).…………4分

(Ⅱ)由f(x)=sin(2x+).

又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的單調遞增區(qū)間是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),

∴函數(shù)f(x)的圖象右移后對應的函數(shù)可成為奇函數(shù).…………12分

 

18.解:(I)一次射擊后,三人射中目標分別記為事件A1,A2,A3

由題意知A1,A2,A3互相獨立,且,…………2分

.…………4分

∴一次射擊后,三人都射中目標的概率是.…………5分

(Ⅱ)證明:一次射擊后,射中目標的次數(shù)可能取值為0、1、2、3,相應的沒有射中目標的的次數(shù)可能取值為3、2、1、0,所以可能取值為1、3, …………6分

)+

 ………8分

,………10分

.………12分

19.解:(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.

    ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

    ∴與平面A1C1CA所成角,

.

與平面A1C1CA所成角為.…………3分

(Ⅱ)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結BM,

    ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內(nèi)的射影,

    ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,………………………5分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點,

    ∴CG=2,DC=1 在直角三角形CDG中,,.……7分

    即二面角B―A1D―A的大小為.……………………8分

(Ⅲ)取線段AC的中點F,則EF⊥平面A1BD.……………9分

證明如下:

∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,……………10分

∵EF在平面A1C1CA內(nèi)的射影為C1F,當F為AC的中點時,

C1F⊥A1D,∴EF⊥A1D.

同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

文本框:  解法二:

(Ⅰ)同解法一……………………3分

(Ⅱ)∵A1B1C1―ABC為直三棱柱,C1C=CB=CA=2,

AC⊥CB,D、E分別為C1C、B1C1的中點.

建立如圖所示的坐標系得:

C(0,0,0),B(2,0,0),A(0,2,0),

C1(0,0,2), B1(2,0,2), A­1(0,2,2),

D(0,0,1), E(1,0,2).………………6分

,設平面A1BD的法向量為,

  .…………6分

平面ACC1A1­的法向量為=(1,0,0),.………7分

即二面角B―A1D―A的大小為.…………………8分

(Ⅲ)F為AC上的點,故可設其坐標為(0,,0),∴.

由(Ⅱ)知是平面A1BD的一個法向量,

欲使EF⊥平面A1BD,當且僅當//.……10分

,∴當F為AC的中點時,EF⊥平面A1BD.…………………12分

 

20.解:(Ⅰ) 據(jù)題意: ,

.

   兩式相減,有:…………3分

 .…………4分

又由=解得. …………5分

是以為首項,為公比的等比數(shù)列,∴.…………6分

 (Ⅱ)

 ………8分

…………12分

 

21.解: (Ⅰ)依題意,由余弦定理得:

, ……2分

  

.

,即.  …………4分

(當動點與兩定點共線時也符合上述結論)

動點的軌跡Q是以為焦點,實軸長為的雙曲線.其方程為.………6分

(Ⅱ)假設存在定點,使為常數(shù).

(1)當直線不與軸垂直時,

設直線的方程為,代入整理得:

.…………7分

由題意知,

,,則,.…………8分

于是,   …………9分

.…………10分

要使是與無關的常數(shù),當且僅當,此時.…11分

(2)當直線軸垂直時,可得點,,

時,.   

故在軸上存在定點,使為常數(shù).…………12分

 

22.解:(Ⅰ)………1分

       

        同理,令

        ∴f(x)單調遞增區(qū)間為,單調遞減區(qū)間為.……………………3分

        由此可知…………………………………………4分

   (Ⅱ)由(I)可知當時,有,

        即.

    .……………………………………………………………………7分

  (Ⅲ) 設函數(shù)…………………………………10分

       

        ∴函數(shù))上單調遞增,在上單調遞減.

        ∴的最小值為,即總有

        而

       

        即

        令

       

        ……………………………………14分

 


同步練習冊答案