C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DCABD  ABC

二、填空題(每小題5 分,共35分)

9.     10.     11.91    12.②④

13.     14.(i)(2分)    (ii)(3分)

15.(i)(3分);    (ii) (2分)

      1. <mark id="rrvpd"><strong id="rrvpd"><sub id="rrvpd"></sub></strong></mark>
          <samp id="rrvpd"><dl id="rrvpd"></dl></samp>

          20090401

          ,2 分

          8,3 分

          解得;……………………4分分

          (2)

           ………………6分

          …………8分

          由余弦定理得

           ……………………10分

           …………………………12分

          17.解:(1)= 1 表示經(jīng)過(guò)操作以后A 袋中只有一個(gè)紅球,有兩種情形出現(xiàn)

          ①先從A 中取出1 紅和1 白,再?gòu)腂 中取一白到A 中

          ②先從A 中取出2 紅球,再?gòu)腂 中取一紅球到A 中

          …………………………(5分)

          (2)同(1)中計(jì)算方法可知:

          于是的概率分別列

          0

          1

          2

          3

          P

           

          E=……………………12分

          18.解:(1)AB//平面DEF. 在△ABC 中,

          ∵E、F分別是AC、BC 上的點(diǎn),且滿足

          ∴AB//EF.

          ∴AB//平面DEF. …………3 分

          (2)過(guò)D點(diǎn)作DG⊥AC 于G,連結(jié)BG,

          ∵AD⊥CD, BD⊥CD,

          ∴∠ADB 是二面角A―CD―B 的平面角.

          ∴∠ADB = 90°, 即BD⊥AD.

          ∴BD⊥平面ADC.

          ∴BD⊥AC.

          ∴AC⊥平面BGD.

          ∴BG⊥AC .

          ∴∠BGD 是二面角B―AC―D 的平面角. 5 分

          在Rt△ADC 中,AD = a,DC = a,AC = 2a,

          在Rt

          即二面角B―AC―D的大小為……………………8分

          (2)∵AB//EF,

          ∴∠DEF(或其補(bǔ)角)是異面直線AB 與DE 所成的角. ………………9 分

          ∵AB =

          ∴EF=  ak .

          又DC = a,CE = kCA = 2ak,

          ∴DF= DE =

          ………………4分

          ∴cos∠DEF=………………11分

          …………………………12分

          19.解:(1)依題意建立數(shù)學(xué)模型,設(shè)第n 次服藥后,藥在體內(nèi)的殘留量為an(毫克)

          a1 = 220,a2 =220×1.4 ……………………2 分

          a4 = 220 + a2 (1-0.6) = 343.2 ……………………5 分

          (2)由an = 220 + 0.4an―1 (n≥2 ),

          可得

          所以()是一個(gè)等比數(shù)列,

          不會(huì)產(chǎn)生副作用……………………13分

          20.解:(1)由條件知:

          ……………………2分

          b=1,

          ∴橢圓C的方程為:……………………4分

          (2)依條件有:………………5分

          …………7分

          ,

          ………………7分

          …………………………9分

          由弦長(zhǎng)公式得

              得

          =

           …………………………13分

          21.解:(1)當(dāng)

          上單調(diào)遞增,

          ……………………5分

          (2)(1),

          需求一個(gè),使(1)成立,只要求出

          的最小值,

          滿足

          上↓

          ↑,

          只需證明內(nèi)成立即可,

          為增函數(shù)

          ,故存在與a有關(guān)的正常數(shù)使(1)成立。13分

           


          同步練習(xí)冊(cè)答案
        • <code id="rrvpd"></code>