將①代入上式得.即點在直線上.所以三點共線 查看更多

 

題目列表(包括答案和解析)

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當(dāng)時,,則

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當(dāng)時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增!最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

由條件得消去并整理得  ②

,,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

由P在橢圓上,有

因為,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準(zhǔn)線交于兩點,;則的實軸長為(      )

                                        

【解析】設(shè)等軸雙曲線方程為,拋物線的準(zhǔn)線為,由,則,把坐標(biāo)代入雙曲線方程得,所以雙曲線方程為,即,所以,所以實軸長,選C.

 

查看答案和解析>>

從方程中消去t,此過程如下:
由x=2t得,將代入y=t-3中,得到
仿照上述方法,將方程中的α消去,并說明它表示什么圖形,求出其焦點.

查看答案和解析>>


同步練習(xí)冊答案