(Ⅱ)若以為斜率的直線與雙曲線相交于兩個不同的點.且線段的垂直平分線與兩坐標軸圍成的三角形的面積為.求的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線中心在原點,焦點在x軸上,實軸長為2.一條斜率為1的直線經(jīng)過雙曲線的右焦點與雙曲線相交于A、B兩點,以AB為直徑的圓與雙曲線的右準線相交于M、N.
(1)若雙曲線的離心率2,求圓的半徑;
(2)設(shè)AB中點為H,若
HM
HN
=-
16
3
,求雙曲線方程.

查看答案和解析>>

已知雙曲線的兩條漸進線過坐標原點,且與以點為圓心,為半徑的圓相且,雙曲線的一個頂點與點關(guān)于直線對稱,設(shè)直線過點,斜率為。

(Ⅰ)求雙曲線的方程;

(Ⅱ)當時,若雙曲線的上支上有且只有一個點到直線的距離為,求斜率的值和相應(yīng)的點的坐標。

查看答案和解析>>

已知雙曲線W:數(shù)學(xué)公式,其中一個焦點到相應(yīng)準線間的距離為數(shù)學(xué)公式,漸近線方程為數(shù)學(xué)公式
(1)求雙曲線W的方程
(2)過點Q(0,1)的直線l交雙曲線W與A,B兩個不同的點,若坐標原點O在以線段AB為直徑的圓外,求直線l的斜率的取值范圍.

查看答案和解析>>

設(shè)直線2x-y+1=0與橢圓
x2
3
+
y2
4
=1
相交于A、B兩點.
(1)線段AB中點M的坐標及線段AB的長;
(2)已知橢圓具有性質(zhì):設(shè)A、B是橢圓
x2
a2
+
y2
b2
=1
上的任意兩點,M是線段AB的中點,若直線AB、OM的斜率都存在,并記為kAB,kOM,則kAB?kOM為定值.試對雙曲線
x2
a2
-
y2
b2
=1
寫出具有類似特性的性質(zhì),并加以證明.

查看答案和解析>>

已知雙曲線W:,其中一個焦點到相應(yīng)準線間的距離為,漸近線方程為
(1)求雙曲線W的方程
(2)過點Q(0,1)的直線l交雙曲線W與A,B兩個不同的點,若坐標原點O在以線段AB為直徑的圓外,求直線l的斜率的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案