B.若m,n,m∥,n∥,則∥ 查看更多

 

題目列表(包括答案和解析)

mn,兩個等差數(shù)列m,a1,a2,nm,b1,b2,b3,n的公差分別是d1d2,則的值為

A.                            B.                            C.                            D.

查看答案和解析>>

M,N∈{x|x=a2×102+a1×10+a0},其中ai(i=0,1,2)∈{1,2,3,4,5,6},并且M+N=606,則實(shí)數(shù)對(M,N)表示平面上不同點(diǎn)的個數(shù)為

A.32              B.30     C.62       D.60

查看答案和解析>>

若m,n為實(shí)數(shù),則使mn(m-n)>0成立的一個充要條件為(    )

A.0<                    B.0>

C.                         D.

查看答案和解析>>

若m∈N*,定義一種運(yùn)算*,滿足(m+1)*1-2(m*1),1*1=2,則8*1=(    )

A.128                B.256             C.512              D.1024

查看答案和解析>>

m,nN*,則“a>b”是“am+n+bm+n>anbm+ambn”的(  )

(A)充分而不必要條件 (B)必要而不充分條件

(C)充要條件 (D)既不充分也不必要條件

 

查看答案和解析>>

一、1―5DCDDD       6―10CBADC   11―12DA

20080428

三、17、解:

(1)

      

       ∵相鄰兩對稱軸的距離為

        

   (2)

       ,

       又

       若對任意,恒有

       解得

18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,且P(A)=P(B)=P(C)=.

(Ⅰ)至少有1人面試合格的概率是

(Ⅱ)的可能取值為0,1,2,3.

     

              =

              =

     

              =

              =

     

     

所以, 的分布列是

0

1

2

3

P

的期望

(文)解  基本事件共有6×6=36個.  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個.所以,是5的倍數(shù)的概率是 .

(Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

共20個,所以,是3的倍數(shù)的概率是.

(Ⅲ)此事件的對立事件是都不是5或6,其基本事件有個,所以,中至少有一個5或6的概率是.

19、證明:(1)∵

                                         

(2)令中點(diǎn)為中點(diǎn)為,連結(jié)、

     ∵的中位線

              

又∵

    

     ∴

     ∵為正

       

     ∴

     又∵

 ∴四邊形為平行四邊形   

  

20、解:(1)由,得:

            

     (2)由             ①

          得         ②

      由②―①,得  

       即:

     

      由于數(shù)列各項(xiàng)均為正數(shù),

         即 

      數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,

      數(shù)列的通項(xiàng)公式是  

    (3)由,得:

      

        

        

21、解(1)由題意的中垂線方程分別為,

于是圓心坐標(biāo)為

=,即   所以

于是 ,所以  即

(2)假設(shè)相切, 則,

, 這與矛盾.

故直線不能與圓相切.

22、(理)

(文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗(yàn)得:這時都是極值點(diǎn).(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

x

(-∞,-)

(-,1)

(1,+∞)

f ′(x)

∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當(dāng)x=-時,f (x)有極大值,f (-)=;當(dāng)x=1時,f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

∴  ∴  ∴   或∴ 

 

 

 


同步練習(xí)冊答案
<thead id="19msg"></thead>