設(shè)命題P:函數(shù)間(1.2)上單調(diào)遞增.命題Q:不等式對(duì)任意都成立.若“P或Q 是真命題.“P且Q 是假命題.且實(shí)數(shù)a的取值范圍是 查看更多

 

題目列表(包括答案和解析)

設(shè)命題P:函數(shù)間(1,2)上單調(diào)遞增,命題Q:不等式

對(duì)任意都成立,若“P或Q”是真命題,“P且Q”是假命題,且實(shí)數(shù)a的取值范圍是                   

A.                                                B.         

C.                                    D.

查看答案和解析>>

設(shè)命題P:函數(shù)間(1,2)上單調(diào)遞增,命題Q:不等式

對(duì)任意都成立,若“P或Q”是真命題,“P且Q”是假命題,且實(shí)數(shù)a的取值范圍是            

A.                                                B.         

C.                                     D.

查看答案和解析>>

設(shè)命題P:函數(shù)f(x)═x+
ax
(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對(duì)任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

設(shè)命題p:函數(shù)f(x)=2|x-a|在區(qū)間(1,+∞)上單調(diào)遞增;命題q:a∈{y|y=
16-4x
,x∈R},如果“p且q”是假命題,“p或q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的值域是R.如果命題p或q為真命題,p且q為假命題,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

一、1―5DCDDD       6―10CBADC   11―12DA

<li id="tan8f"><em id="tan8f"></em></li>
<table id="tan8f"></table><table id="tan8f"><em id="tan8f"><ul id="tan8f"></ul></em></table>

20080428

三、17、解:

(1)

      

       ∵相鄰兩對(duì)稱(chēng)軸的距離為

        

   (2)

       ,

       又

       若對(duì)任意,恒有

       解得

18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,且P(A)=P(B)=P(C)=.

(Ⅰ)至少有1人面試合格的概率是

(Ⅱ)的可能取值為0,1,2,3.

     

              =

              =

     

              =

              =

     

     

所以, 的分布列是

0

1

2

3

P

的期望

(文)解  基本事件共有6×6=36個(gè).  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個(gè).所以,是5的倍數(shù)的概率是 .

(Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

共20個(gè),所以,是3的倍數(shù)的概率是.

(Ⅲ)此事件的對(duì)立事件是都不是5或6,其基本事件有個(gè),所以,中至少有一個(gè)5或6的概率是.

19、證明:(1)∵

                                         

(2)令中點(diǎn)為中點(diǎn)為,連結(jié)、

     ∵的中位線

              

又∵

    

     ∴

     ∵為正

       

     ∴

     又∵,

 ∴四邊形為平行四邊形   

  

20、解:(1)由,得:

            

     (2)由             ①

          得         ②

      由②―①,得  

       即:

     

      由于數(shù)列各項(xiàng)均為正數(shù),

         即 

      數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,

      數(shù)列的通項(xiàng)公式是  

    (3)由,得:

      

        

        

21、解(1)由題意的中垂線方程分別為,

于是圓心坐標(biāo)為

=,即   所以 ,

于是 ,所以  即

(2)假設(shè)相切, 則,

這與矛盾.

故直線不能與圓相切.

22、(理)

(文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗(yàn)得:這時(shí)都是極值點(diǎn).(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

x

(-∞,-)

(-,1)

(1,+∞)

f ′(x)

∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當(dāng)x=-時(shí),f (x)有極大值,f (-)=;當(dāng)x=1時(shí),f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

∴  ∴  ∴   或∴ 

 

 

 


同步練習(xí)冊(cè)答案