查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過(guò)的直線與軌跡交于、兩點(diǎn),又過(guò)、作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、1―5DCDDD       6―10CBADC   11―12DA

    <thead id="27gst"></thead>
<delect id="27gst"><tr id="27gst"></tr></delect>
  • <rp id="27gst"><tr id="27gst"></tr></rp>

      <samp id="27gst"><tbody id="27gst"><var id="27gst"></var></tbody></samp>
        <rp id="27gst"><sub id="27gst"></sub></rp>
        1. <samp id="27gst"><tbody id="27gst"><s id="27gst"></s></tbody></samp>

            20080428

            三、17、解:

            (1)

                  

                   ∵相鄰兩對(duì)稱軸的距離為

                    

               (2)

                   ,

                   又

                   若對(duì)任意,恒有

                   解得

            18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,且P(A)=P(B)=P(C)=.

            (Ⅰ)至少有1人面試合格的概率是

            (Ⅱ)的可能取值為0,1,2,3.

                 

                          =

                          =

                 

                          =

                          =

                 

                 

            所以, 的分布列是

            0

            1

            2

            3

            P

            的期望

            (文)解  基本事件共有6×6=36個(gè).  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個(gè).所以,是5的倍數(shù)的概率是 .

            (Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

            共20個(gè),所以,是3的倍數(shù)的概率是.

            (Ⅲ)此事件的對(duì)立事件是都不是5或6,其基本事件有個(gè),所以,中至少有一個(gè)5或6的概率是.

            19、證明:(1)∵

                                                     

            (2)令中點(diǎn)為中點(diǎn)為,連結(jié)、

                 ∵的中位線

                          

            又∵

                

                 ∴

                 ∵為正

                   

                 ∴

                 又∵,

             ∴四邊形為平行四邊形   

              

            20、解:(1)由,得:

                        

                 (2)由             ①

                      得         ②

                  由②―①,得  

                   即:

                 

                  由于數(shù)列各項(xiàng)均為正數(shù),

                     即 

                  數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,

                  數(shù)列的通項(xiàng)公式是  

                (3)由,得:

                  

                    

                    

            21、解(1)由題意的中垂線方程分別為,

            于是圓心坐標(biāo)為

            =,即   所以 ,

            于是 ,所以  即

            (2)假設(shè)相切, 則

            , 這與矛盾.

            故直線不能與圓相切.

            22、(理)

            (文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗(yàn)得:這時(shí)都是極值點(diǎn).(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

            x

            (-∞,-)

            (-,1)

            (1,+∞)

            f ′(x)

            ∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當(dāng)x=-時(shí),f (x)有極大值,f (-)=;當(dāng)x=1時(shí),f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

            ∴  ∴  ∴   或∴ 

             

             

             


            同步練習(xí)冊(cè)答案
              <center id="27gst"><i id="27gst"></i></center>