題目列表(包括答案和解析)
(本小題滿分12分)
如圖:在底面為直角梯形的四棱錐P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.
(1)求證:BD⊥平面PAC
(2)求二面角B-PC-A的大小.
(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點(diǎn)E在棱PA上,且PE=2EA.
(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
(本小題滿分12分)
如圖:在底面為直角梯形的四棱錐P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.
(1)求證:BD⊥平面PAC
(2)求二面角B-PC-A的大小.
(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點(diǎn)E在棱PA上,且PE=2EA.
(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
高考資源網(wǎng)版權(quán)所有
一、DBCCC DCADB
二、11.72 12. 13. 14. 15.
三、16.(Ⅰ).
∵,∴,∴,∴當(dāng)時,f(A)取最小值.
(Ⅱ)由(Ⅰ)知, 時, .于是,
由得.
17.(Ⅰ)設(shè)“從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨(dú)立,且,.
故取出的4個球均為黑球的概率為.
(Ⅱ)設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件,“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件互斥,
且,.
故取出的4個球中恰有1個紅球的概率為.
(Ⅲ)取出的4個球中紅球的個數(shù)為0,1,2,3時的概率分別記為.由(Ⅰ),(Ⅱ)得,,.從而.
18.(I)∵AB∥CD,AD=DC=CB=a,∴四邊形ABCD是等腰梯形.設(shè)AC交BD于N,連EN.
∵∠ABC=60°,∴∠DCB=∠ADC=120°,∠DAC=∠ACD=30°,
∴AC=,AB=2a,=90°.
又四邊形ACEF是矩形,
∴AC⊥平面BCE.∴AC⊥BE.
(II)∵平面ACEF⊥平面ABCD, EC⊥AC,
∴EC⊥面 ABCD,∴EC⊥CD, EC⊥AD,又AF∥CE,
∴AF⊥AD,而AF=CE,AD=CD,
∴Rt△≌Rt△,DE=DF.
過D作DG⊥EF于G,則G為EF的中點(diǎn),于是EG=.
在Rt△中,,∴.∴.
設(shè)所求二面角大小為,則由及,得,,
www.ks5u.com
.21.(I)由于橢圓過定點(diǎn)A(1,0),于是a=1,c=.
∵ ,∴.
(Ⅱ)解方程組,得.
∵,∴.
(Ⅲ)設(shè)拋物線方程為:.
又∵,∴.
又,得.
令.
∵內(nèi)有根且單調(diào)遞增,
∴
∴
故.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com