C(.3.0) ---2分 查看更多

 

題目列表(包括答案和解析)

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點x軸的非負半軸為極軸建立極坐標系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點個數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

(2012•河北模擬)第11屆全國人大五次會議于2012年3月5日至3月14日在北京召開,為了搞好對外宣傳工作,會務(wù)組選聘了16名男記者和14名記者擔任對外翻譯工作,調(diào)查發(fā)現(xiàn),男、女記者中分別有10人和6人會俄語.
(I)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
會俄語 不會俄語 總計
總計 30
并回答能否在犯錯的概率不超過0.10的前提下認為性別與會俄語有關(guān)?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635
(II)若從會俄語的記者中隨機抽取3人成立一個小組,則小組中既有男又有女的概率是多少?
(III)若從14名女記者中隨機抽取2人擔任翻譯工作,記會俄語的人數(shù)為ξ,求ξ的期望.

查看答案和解析>>

(2013•梅州二模)有甲乙兩個班進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表.
優(yōu)秀 非優(yōu)秀 總計
甲班 10
乙班 30
合計 105
已知在全部105人中隨機抽取1人為優(yōu)秀的概率為
2
7

(1)請完成上面的聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班10優(yōu)秀的學生按2到11進行編號,先后兩次拋擲一枚骰子,出現(xiàn)的點數(shù)之和為被抽取的序號.試求抽到6號或10號的概率.
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
概率表
P(K2≥k0 0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

(2011•天津模擬)如圖,橢圓
x
2
 
a
2
 
+
y
2
 
b2
=1(a>b>0)
與一等軸雙曲線相交,M是其中一個交點,并且雙曲線在左、右頂點分別是該橢圓的左、右焦點F1、F2,雙曲線的左、右焦點分別是橢圓左、右頂點,△MF1F2的周長為(4
2
+1
),設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A,B和C,D.
(1)求橢圓和雙曲線的標準方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,求證:k1•k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

(2013•煙臺二模)為了解某班學生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計
男生 5
女生 10
合計 50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為
3
5

(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為ξ,求ξ的分布列與期望.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>


同步練習冊答案